Abstract:
Electron emission materials consisting of carbides, borides, and oxides, and related mixtures and compounds, of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y, and lanthanides La through Lu are used in electrodes. The electron emission materials include ternary Group IVB-IIIB, IVB-IIA, and IIIB-IIA oxides and quaternary Group IVB-IIIB-IIA oxides. These electron emission materials are typically contained in a refractory metal matrix formed of tungsten, molybdenum, tantalum, rhenium, and their alloys, but may also be used by themselves. These materials and electrodes have high melting points, low vapor pressures, low work functions, high electrical and thermal conductivity, and high thermionic electron emission and field emission properties.
Abstract:
Cathode in an electron tube, is disclosed, including an actinoid metal or actinoid metal compound added to either a thermion emission material layer or a base metal, or formed between the thermion emission material layer and the base metal, whereby improving an electron emission characteristic of the cathode, significantly.
Abstract:
A cathode for an electron tube including a base body having nickel as a major component and including at least one kind of reducing agents, a metal member in a layer-like shape, which has as a major component a metal provided with a reducing power equivalent to or smaller than a reducing power of the at least one kind of reducing agents included in the base body and larger than a reducing power of nickel and which is formed on faces of the base body, an electron emitting substance layer formed by depositing alkaline earth metal oxides including barium on the metal member, wherein the metal member is formed on the faces of the base body such that the base body is restrained from deforming by thermal stresses of intermetallic compounds formed at portions of the base body bounded with the metal member.
Abstract:
A cathode for an electron tube includes a layer of a electron emitting substance containing alkaline earth metal oxides containing 0.01--20.0 wt % of both a lanthanum compound and a magnesium compound or a lanthanum-magnesium compound disposed on a base metal including nickel as a major component and tungsten as a minor component. The tungsten prevents embrittlement and ensures a continuing supply of fill barium in the electron-emitting substance. The cathode enjoys full interchangeability with the conventional oxide cathode and a 15-30% longer life span.
Abstract:
An EL sheet diaphragm including a diffusion type EL sheet having a diaphragm portion exhibiting a dome shape and a flange supporting portion disposed about the outer circumference of the diffusion type EL sheet. The diffusion type EL sheet including a transparent film having an upper surface and a lower surface, a transparent electrode layer formed on the lower surface of the transparent film, a light emitting layer formed on the transparent electrode, a dielectric layer formed on the light emitting layer, a rear electrode layer formed on the dielectric layer, and an insulating layer formed on the rear electrode layer. The diffusion type EL sheet emits light from the diaphragm portion of the upper surface of the transparent film. The diffusion type EL sheet bows outwardly in an at-rest state such that the upper surface of the transparent film exhibits a convex shape, and bows inwardly when depressed for operation such that the upper surface of the transparent film exhibits a concave shape.
Abstract:
A cathode for an electron tube in accordance with the present invention comprises: a base containing not only nickel as a major element but also a reducing agent; a layer of an electron-emissive substance which is applied to the base and contains not only an alkaline earth metal oxide as a principal component but also a scandium oxide; and a heater for heating the layer.