Abstract:
A variable inductor and a wideband voltage controlled oscillator are provided to reduce a size of the variable inductor by arranging a first conductive line and a second conductive line on the same plane. A variable inductor(100) includes a first conductor(110), a second conductor(120), a switch(130) and a substrate. An AC signal is applied to the first conductor. The first conductor is formed with a polygon, circle or multiple spiral shape. The second conductor is formed with a loop shape. If the AC signal is applied to the first conductor, the second conductor generates the induction current. The second conductor is arranged on the same plane as the first conductor. The switch switches the loop connection state of the second conductor according to the external control signal and controls the inductance of the first conductor. The substrate supports the first conductor and the second conductor.
Abstract:
A method using a phase locked loop (PLL) includes receiving a reference frequency. The method further includes generating a control signal based on the reference frequency. The method further includes adjusting an output signal based on the control signal. Adjusting the output signal includes operating a plurality of switches in response to the control signal, wherein operating the plurality of switches comprises selectively electrically connecting a first ground plane to a first floating plane, wherein the first floating plane is between the first ground plane and the signal line, and the first floating plane is a same distance from a substrate as the first ground plane.
Abstract:
A voltage controlled oscillator comprises a negative resistance, a first inductor, a fixed capacitor, and a frequency control component. The frequency control component comprises at least one varactor and at least a second inductor connected in series with the at least one varactor. A magnitude of an inductance of the second inductor is selected such that the frequency control component has an effective capacitance range larger than a capacitance range of the at least one varactor.
Abstract:
A voltage controlled oscillator comprises a negative resistance, a first inductor, a fixed capacitor, and a frequency control component. The frequency control component comprises at least one varactor and at least a second inductor connected in series with the at least one varactor. A magnitude of an inductance of the second inductor is selected such that the frequency control component has an effective capacitance range larger than a capacitance range of the at least one varactor.
Abstract:
An inductor layout (200, 300, 400) comprising a first inductor (210, 310, 410) and a second inductor (220, 320, 420). The first and second inductors (210, 310, 410; 220, 320, 420) are electrically and magnetically independent inductors concentrically arranged on an integrated circuit 800. At least one of the first and second inductors (210, 310, 410; 220, 320, 420) is a multi-loop inductor with a first axis (226a, 316a, 326a, 416a, 426a) of symmetry.
Abstract:
An apparatus for generating an oscillating output signal includes an inductive-capacitive (LC) circuit and a current tuning circuit. The LC circuit includes a primary inductor and a varactor coupled to the primary inductor. A capacitance of the varactor is responsive to a voltage at a control input of the varactor. The current tuning circuit includes a secondary inductor and a current driving circuit coupled to the secondary inductor. The current driving circuit is responsive to a current at a control input of the current driving circuit. An effective inductance of the primary inductor is adjustable via magnetic coupling to the secondary inductor, and a frequency of the oscillating output signal is responsive to the effective inductance of the primary inductor and to the capacitance of the varactor.
Abstract:
There are provided a variable inductor with little degradation in quality factor, and an oscillator and a communication system using the variable inductor. An inductance controller comprising a reactance device with a variable device value, such as, for example, a variable capacitor, is connected to a secondary inductor, magnetically coupled to a primary inductor through mutual inductance. The inductance controller is provided with an inductance control terminal for receiving a control signal for controlling capacitance of the variable capacitor. Inductance of the primary inductor is varied by varying the capacitance by the control signal.
Abstract:
There are provided a variable inductor with little degradation in quality factor, and an oscillator and a communication system using the variable inductor. An inductance controller comprising a reactance device with a variable device value, such as, for example, a variable capacitor, is connected to a secondary inductor, magnetically coupled to a primary inductor through mutual inductance. The inductance controller is provided with an inductance control terminal for receiving a control signal for controlling capacitance of the variable capacitor. Inductance of the primary inductor is varied by varying the capacitance by the control signal.
Abstract:
There are provided a variable inductor with little degradation in quality factor, and an oscillator and a communication system using the variable inductor. An inductance controller comprising a reactance device with a variable device value, such as, for example, a variable capacitor, is connected to a secondary inductor, magnetically coupled to a primary inductor through mutual inductance. The inductance controller is provided with an inductance control terminal for receiving a control signal for controlling capacitance of the variable capacitor. Inductance of the primary inductor is varied by varying the capacitance by the control signal.
Abstract:
An inductor circuit includes a pair of inductors connected in parallel with each other and a switch for turning on and off electric power to one of the pair of inductors. The inductance of the inductor circuit can be varied and the quality factor Q can be improved. Further, RF circuits employing the inductor circuit can generate an intended operating frequency.