SYSTEMS AND METHODS FOR PHASE MEASUREMENTS
    2.
    发明申请
    SYSTEMS AND METHODS FOR PHASE MEASUREMENTS 审中-公开
    用于相位测量的系统和方法

    公开(公告)号:WO2005001445A3

    公开(公告)日:2005-12-15

    申请号:PCT/US2004019456

    申请日:2004-06-18

    Abstract: Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention

    Abstract translation: 本发明的优选实施例涉及用于相位测量的系统,其使用多种策略的组合来解决相位噪声问题,包括但不限于公共路径干涉测量,相位参考,主动稳定和差分测量。 实施例涉及用于用光成像小生物物体的光学装置。 这些实施方案可以应用于例如细胞生理学和神经科学领域。 这些优选实施例基于相位测量和成像技术的原理。 使用相位测量和成像技术的科学动机源于例如亚微米级别的细胞生物学,其可以包括但不限于成像发育异常起源,细胞通讯,神经元传播和遗传密码的实现。 亚细胞组分的结构和动力学目前不能使用现有的方法和技术(例如x射线和中子散射)在其天然状态下研究。 相比之下,具有纳米分辨率的基于光的技术使得能够以其天然状态研究细胞机械。 因此,本发明的优选实施例包括基于干涉测量和/或相位测量的原理的系统,并且用于研究细胞生理学。 这些系统包括使用光学干涉仪来测量相位的低相干干涉测量(LCI)原理,或使用其中使用细胞部件本身内部的干扰的光散射光谱(LSS),或者替代地,LCI和LSS的原理可以组合以产生 在本发明的系统中

    SYSTEM AND METHOD FOR MEASURING OPTICAL DISTANCE
    3.
    发明申请
    SYSTEM AND METHOD FOR MEASURING OPTICAL DISTANCE 审中-公开
    用于测量光学距离的系统和方法

    公开(公告)号:WO2003052345A1

    公开(公告)日:2003-06-26

    申请号:PCT/US2002/040440

    申请日:2002-12-18

    Abstract: The methods of the present invention are directed at an accurate phase-based technique for measuring one or more characteristics of an object to be measured. Such a characteristic can include arbitrarily long distances, for example, preferably with sub-nanometer precision. A preferred embodiment of the present invention employs an interferometer, for example, a Michelson interferometer, with harmonically related light sources, one continuous wave (CW) and a second source having low coherence (LC). The low coherence source provides a spectral bandwidth, preferably a bandwidth of greater than 5 nm for a 1 micron (µ) wavelength, for example, although the required bandwidth can vary as a function of wavelength and application. By slightly adjusting the center wavelength of the low coherence source between scans of the object to be measured such as a target sample, the phase relationship between the heterodyne signals of the CW and low coherence light can be used to measure the separation between reflecting surfaces or interfaces with sub-nanometer precision. As this technique is completely free of 2π ambiguity, an issue that plagues most phase-based techniques, it can be used to measure arbitrarily long optical distances without loss of precision. An application of a preferred embodiment of the method of the present invention is the precision determination of the refractive index of a sample at a given wavelength of a sample with a known physical thickness. Another application of a preferred embodiment of the method of the present invention is the precision determination of a sample's physical thickness with a known refractive index. A further application of a preferred embodiment of the method of the present invention is the precision determination of the refractive index ratio at two given wavelengths.

    Abstract translation: 本发明的方法涉及用于测量待测物体的一个或多个特性的精确的基于相位的技术。 这样的特征可以包括任意长的距离,例如优选地具有亚纳米精度。 本发明的优选实施例采用具有谐波相关光源的干涉仪,例如迈克尔逊干涉仪,一个连续波(CW)和具有低相干性(LC)的第二源。 低相干源提供光谱带宽,优选为1微米(微)波长的带宽优选大于5nm,尽管所需的带宽可以随波长和应用的变化而变化。 通过在诸如目标样本的待测对象的扫描之间稍微调整低相干源的中心波长,可以使用CW的外差信号与低相干光之间的相位关系来测量反射表面之间的间隔或 界面具有亚纳米精度。 由于这种技术完全没有2 pi模糊性,这是一个困扰大多数基于相位的技术的问题,它可用于测量任意长的光学距离,而不会损失精度。 本发明方法的优选实施方案的应用是在具有已知物理厚度的样品的给定波长处的样品的折射率的精确测定。 本发明方法的优选实施方案的另一应用是用已知的折射率精确测定样品的物理厚度。 本发明方法的优选实施方案的进一步应用是在两个给定波长下的折射率比的精确测定。

    PORTABLE RAMAN DIAGNOSTIC SYSTEM
    4.
    发明申请
    PORTABLE RAMAN DIAGNOSTIC SYSTEM 审中-公开
    便携式拉曼诊断系统

    公开(公告)号:WO2012019102A3

    公开(公告)日:2012-10-18

    申请号:PCT/US2011046750

    申请日:2011-08-05

    Abstract: The present invention relates to an integrated approach to measuring biological samples utilizing a process of eliminating the uninformative or spurious spectral regions which simultaneously removes the necessity for a full spectrograph-CCD system. This approach enables the use of a portable Raman diagnostic system, having significantly reduced size and weight while retaining the required sensitivity. The selection of only a limited number of spectral bands allows the construction of a miniaturized Raman instrument by replacing the spectrograph-CCD combination with an array of optical bandpass filters and light detector(s). One of the embodiments of such a design can incorporate a single photodiode as a light detector. A preferred embodiment of the present invention uses wavelength interval selection based on non-linear representation, such as support vector regression. The wavelength selection protocol is based on the minimization of cross-validation error in the training data. tral information. To acquire the full spectrum necessary for the analysis, a dispersive spectrograph and a CCD detector is typically employed.

    Abstract translation: 本发明涉及利用消除不信息或杂散光谱区域的过程来测量生物样品的综合方法,其同时消除了对全光谱仪-CDC系统的必要性。 这种方法使得能够使用便携式拉曼诊断系统,其具有显着减小的尺寸和重量,同时保持所需的灵敏度。 仅选择有限数量的光谱带允许通过用光学带通滤光器和光检测器阵列替换光谱仪-CDC组合来构建小型化的拉曼仪器。 这种设计的一个实施例可以结合单个光电二极管作为光检测器。 本发明的优选实施例使用基于非线性表示的波长间隔选择,例如支持向量回归。 波长选择协议基于训练数据中交叉验证错误的最小化。 tral信息。 为了获得分析所需的全部光谱,通常采用色散光谱仪和CCD检测器。

    OPTICAL COMPUTED TOMOGRAPHY IN A TURBID MEDIA
    5.
    发明申请
    OPTICAL COMPUTED TOMOGRAPHY IN A TURBID MEDIA 审中-公开
    光学媒体中的光学计算机图像

    公开(公告)号:WO0185022A3

    公开(公告)日:2002-04-04

    申请号:PCT/US0114643

    申请日:2001-05-04

    CPC classification number: G01N21/4795 A61B5/0059 A61B5/0073

    Abstract: Photon migration methods are employed to image absorbing objects embedded in a turbid medium such as tissue. For improved resolution, early arriving photons are detected to provide data with image reconstruction based on optical computed tomography (CT). The CT method is generalized to take into account the distributions of photon paths. A point spread function (PSF) is expressed in terms of the Green's function for the transport equation. This PSF provides weighting functions for use in a generalized series expansion method. Measurements of turbid medium with scattering and absorption properties included coaxial transmission scans collected in two projections. Blurring associated with multiple scattering was removed and high-resolution images can be obtained.

    Abstract translation: 使用光子迁移方法来对包含在混浊介质(例如组织)中的吸收物体进行成像。 为了提高分辨率,检测到早期到达的光子,以提供基于光学计算机断层摄影(CT)的图像重建的数据。 CT方法被广义化以考虑光子路径的分布。 点扩散函数(PSF)以运输方程的格林函数表示。 该PSF提供用于广义串联扩展方法的加权函数。 具有散射和吸收特性的混浊介质的测量包括在两个投影中收集的同轴传播扫描。 去除与多次散射相关联的模糊,并且可以获得高分辨率图像。

    SYSTEMS AND METHODS FOR PHASE MEASUREMENTS
    7.
    发明申请
    SYSTEMS AND METHODS FOR PHASE MEASUREMENTS 审中-公开
    用于相位测量的系统和方法

    公开(公告)号:WO2005001445A2

    公开(公告)日:2005-01-06

    申请号:PCT/US2004/019456

    申请日:2004-06-18

    Abstract: Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention

    Abstract translation: 本发明的优选实施例针对用于相位测量的系统,其使用多种策略的组合来解决相位噪声的问题,所述策略包括但不限于共路干涉测量,相位参考, 主动稳定和差分测量。 实施例针对用于利用光对小生物物体成像的光学装置。 这些实施例可以应用于例如细胞生理学和神经科学领域。 这些优选实施例基于相位测量和成像技术的原理。 使用相位测量和成像技术的科学动机源于例如亚微米级的细胞生物学,其可以包括但不限于发育异常的成像起源,细胞通信,神经元传递和遗传密码的实施。 亚细胞组分的结构和动力学目前不能用其原生状态使用包括例如X射线和中子散射在内的现有方法和技术进行研究。 相比之下,具有纳米分辨率的基于光的技术使得细胞机器能够以其原生状态进行研究。 因此,本发明的优选实施例包括基于干涉测量和/或相位测量原理的系统,并用于研究细胞生理学。 这些系统包括使用光学干涉仪测量相位的低相干干涉测量法(LCI)或其中使用蜂窝部件本身内的干扰的光散射光谱学(LSS)的原理,或者替代地,可以组合LCI和LSS的原理 在本发明的系统中

Patent Agency Ranking