Abstract:
U An apparatus for applying preselected dye images to i members incident to processes of the type utilizing sheets bearing dyes in the mirror images ofthe preselected images, wherein the sheets (108) are overlayed on the members (88) ; and maintained in pressurised engagement therewith while the sheets and the members are heated. The apparatus comprises a bed (14) for receiving a member thereon with a dye bearing sheet on the member and a resiliently flexible membrane (16) which is positionable over the sheet on the member. A vacuum assembly (18) of the apparatus is oper- ableto evacuate the area between the membrane (16) and the bed (14) in order to draw the membrane into pressurised engagement with the sheet on the member. Radiant heating elements (80) of the apparatus are operable to heat the membrane afterthe vacuum assembly has been actuated, whereby the dye on the sheet is applied to the member to produce the preselected image thereon.
Abstract:
An implantable lead comprises a lead body extending from a lead proximal end portion to a lead distal end portion. The lead body includes one or more longitudinally extending lumens. A conductor is received in, and extends along, a lumen. In varying examples, the implantable lead further comprises a tubular electrode co-axial with, and overlying portions of, the lead body. In one example, a lumen wall is sized and shaped to urge an electrically conductive interposer coupled with the conductor toward an inner surface of the electrode. In another example, a ring member is disposed within a lumen and the conductor is drawn and coupled thereto. In yet another example, an electrically conductive connector couples a first and a second conductor via grooves or threads. In a further example, an axial support member couples a distal end electrode and the lead body. Methods associated with the foregoing are also discussed.
Abstract:
A motor vehicle trunk door articulated to the ends of a first arm mounted pivoting, at its other end, about a vertical lateral pin integral with a body. The truck door moves from a closing position towards an opening position, substantially perpendicular to the closing position, by the first arm having a curved shape, and a second arm. One of the ends of the second arm is secured to the trunk door and the other end is mounted pivoting on a sliding sleeve mounted on a guide rail.
Abstract:
A method of making a planar, subsurface electronic circuit having at least one electronic circuit component assembled therewith is disclosed. First, three dimensional, essentially square channels interspersed with lands are formed within a dielectric material on a substrate. The channels are then filled in one pass with a curable polymeric material containing a conductive metal filler so that the upper surfaces of the circuit trace formed by this conductive material are at essentially the same level as the upper surface of the lands. Circuit components are place to engage the conductive material. The curable material is then cured after placing the electronic component(s).
Abstract:
A polymer lead frame is made from a flexible substrate with flexible conductive traces. The generally square lead frame has diagonal cutouts partially extending from the corners towards the center, as well as a central hole that lies within a footprint of the die. The die is bonded directly to the lead frame, preferably with anisotropic, electrically conductive adhesive. The die is placed with the lead frame in a fixture. A holding force is applied to secure the die and, if necessary, a curing force is applied during a cure cycle. The fixture allows transport of the assembly to a curing oven and allows application of the curing force. The die has contact pads characterized by a non-planar, non-bump-like surface with concavities having depths of at least about one-seventh the diameter of conductive particles in the anisotropic conductive adhesive.
Abstract:
An electrically conductive cement having substantially stable conductivity and resistance characteristics under high humidity conditions comprises a mixture of two epoxy resins with the proportion of each epoxy resin adjusted to provide a volumetric shrinkage in the mixture in the 4 to 16% and a conductive silver particular filler including agglomerates having size and surface characteristics that maintain stable electrical contact with an electrical component lead. The epoxy mixture is preferably a combination of a high-shrinkage epoxy resin and a lower-shrinkage epoxy resin in the appropriate amounts of each so as to produce the desired volumetric shrinkage characteristic. The conductive particle filler is preferably an admixture of silver flakes, silver powder, and an effective amount of silver agglomerates. The agglomerates are irregularly shaped particles having multiple surface indentations and recesses to produce many rough-edged salients or ridges and having a particle length, width, and thickness aspect ratio of about 1:1:1. An effective amount of such agglomerates appears to effect penetration of surface oxides when establishing the cemented connection as a result of the volumetric shrinkage of the polymeric carrier upon curing.
Abstract:
A method for producing a circuit board involves printing a U.V. curable ink onto a substrate in a desired circuit pattern and curing the ink by exposing it to a pulsed U.V. source or subjecting the circuit pattern prepared from a U.V. curable ink containing magnetite particles to a magnetic field to move the magnetite particles to the upper surface of the U.V. curable ink. Other embodiments include circuit boards made in accordance with these methods and the use of the U.V. curable ink as a shielding composition for enclosures housing electronic equipment.
Abstract:
A method for producing a circuit board involves printing a U.V. curable ink onto a substrate in a desired circuit pattern and curing the ink by exposing it to a pulsed U.V. source having an output in the region between 360 nm and 420 nm in a pulsing manner consisting of 5 to 8 one-half second exposure periods where each exposure period is followed by a non-exposure period of about 2 to 3 seconds.
Abstract:
A method for producing a circuit board having conductive circuit elements patterened on a non-conductive substrate involves printing a film of a U.V. curable ink composed of a suspension of silver-coated magnetite particles in a U.V. curable resin onto the substrate in a circuit pattern, subjecting the pattern to a magnetic field to move the magnetite particles to a position at or near the upper surface of the resin and effecting U.V. radiation cure of the U.V. curable ink.
Abstract:
A method of applying a dye image to a plastic member and the image bearing member thereby formed. A disperse dye having a melting point which is below the thermal deflection temperature of the plastic of the member and a vaporization point which is above said deflection temperature is applied to a surface of the member in a desired image. The dye bearing plastic is then heated to a temperature which is above the melting point of the dye and below the thermal deflection temperature of the plastic, but which is nevertheless high enough to cause some softening of said plastic. The dye is then permitted to diffuse into the plastic to provide a sharp, clear and durable image thereon.