Abstract:
The present invention relates to a memory device having 4F2 size cells and a method for fabricating the same. The memory device comprises plural word lines arranged parallel to each other in one direction, plural bit lines arranged parallel to each other, and plural memory cells having a transistor that fills a groove between two adjoining memory cells in a direction of the bit lines. A side wall between the two adjoining memory cells is simultaneously covered by an insulating film formed between the gate terminal and the two memory cells. The gate terminal is connected electrically to a word line, drain terminals of two adjoining memory cells are connected electrically to a bit line, and the gate and drain terminals are alternately arranged. One of the plural memory cells is buried in the substrate, and is electrically connected with a substrate or a well formed in the substrate.
Abstract:
A method for fabricating a semiconductor device with different gate oxide layers. Oxidation is controlled in accordance with the active area dimension so that oxide grows thin at a wider active width (peripheral region) and grows thickly at a narrower active width (cell array region). A gate pattern is formed on a semiconductor substrate having different active areas. Gate spacers are formed and then active dimension dependent oxidation process is performed to grow the oxide layers differently from one another.
Abstract:
In a method of forming a microelectronic structure of a Pt/BSTO/Pt capacitor stack for use in a DRAM device, the improvement comprising substantially eliminating or preventing oxygen out-diffusion from the BSTO material layer, comprising: a) preparing a bottom Pt electrode formation; b) subjecting the bottom Pt electrode formation to an oxygen plasma treatment to form an oxygen enriched Pt layer on the bottom Pt electrode; c) depositing a BSTO layer on said oxygen enriched Pt layer; d) depositing an upper Pt electrode layer on the BSTO layer; e) subjecting the upper Pt electrode layer to an oxygen plasma treatment to form an oxygen incorporated Pt layer; and f) depositing a Pt layer on the oxygen incorporated Pt layer upper Pt elect.
Abstract:
Driving circuits with active body pull-capability for inhibiting boost delay include main, subordinate and boosted signal lines and a first driver circuit electrically coupled to the main signal line, to drive the main signal line at a first potential (e.g., Vcc). A second driver circuit, electrically coupled to the boosted signal line, is also provided to drive the boosted signal line at a second potential (e.g., Vpp) greater than the first potential. A first field effect transistor is provided as a pull-up transistor which has a gate, drain and source electrically coupled to the main signal line, the boosted signal line and the subordinate signal line, respectively. To reduce body-bias effects which might inhibit the speed and pull-up capability of the pull-up transistor, a second field effect transistor is provided to actively pull-up the body (e.g., active region) of the pull-up transistor. This second field effect has a gate, drain and source electrically coupled to the main signal line (or boosted signal line), the boosted signal line and the body of the pull-up transistor, respectively. The second field effect transistor is designed to provide a pull-up function to the body of the pull-up transistor so that the magnitude of the reverse bias between an inversion layer channel (e.g., N-type) and the body region (e.g., P-type) of the pull-up transistor is reduced when the pull-up transistor is turned on to provide a voltage boost to the subordinate signal line. This reduction in the reverse bias results in a reduction of the body-bias effect and the increase in threshold voltage typically associated with the body-bias effect.
Abstract:
Integrated circuit memory devices include at least first and second memory cells electrically coupled to respective first and second sense bit signal lines of a sense amplifier. The sense amplifier comprises a circuit for amplifying a difference in potential between the first and second sense bit signal lines by driving these lines to respective first and second different potentials. A driving circuit is also provided for simultaneously driving the first and second sense bit signal lines towards the first potential in response to application of a boost control signal. This driving circuit preferably comprises a first capacitor electrically connected in series between the boost control input and the first sense bit signal line and a second capacitor electrically connected in series between the boost control input and the second sense bit signal line. The boost control signal is established at the first potential to drive both the sense bit signal lines from different intermediate potentials (e.g., 1/2VCC+, 1/2VCC) towards the first potential, prior to amplification of the difference in potential between the first and second sense bit signal lines by the sense amplifier. The present invention enables the sense amplifier to operate in an environment where the power supply voltage (e.g., VCC) is reduced and the different intermediate potentials (e.g., 1/2VCC+, 1/2VCC) to be amplified are initially established at potentials below the normal sensitivity of the sense amplifier.
Abstract translation:集成电路存储器件包括电耦合到读出放大器的相应第一和第二感测位信号线的至少第一和第二存储器单元。 感测放大器包括用于通过将这些线驱动到相应的第一和第二不同电位来放大第一和第二感测位信号线之间的电位差的电路。 还提供驱动电路,用于响应于施加升压控制信号,同时将第一和第二感测位信号线驱动朝向第一电位。 该驱动电路优选地包括串联电连接在升压控制输入和第一感测位信号线之间的第一电容器和串联电连接在升压控制输入和第二感测位信号线之间的第二电容器。 升压控制信号被建立在第一电位,以驱动来自不同中间电位(例如,+ E,fra 1/2 + EE VCC +,+ E,fra 1/2 + EE VCC)的感测位信号线朝着第一 在由感测放大器放大第一和第二感测位信号线之间的电位差之前的电位。 本发明使得读出放大器能够在电源电压(例如,VCC)减小的环境中工作,并且不同的中间电位(例如,+ E,fra 1/2 + EE VCC +,+ E, + EE VCC)最初建立在低于读出放大器正常灵敏度的电位。
Abstract:
A semiconductor device and a method for fabricating the same are provided to prevent a floating body effect and reduce coupling capacitance between buried bit lines. The semiconductor device comprises a first pillar disposed over a semiconductor substrate and including a vertical channel region, a bit line located in the lower portion of the vertical channel region inside the first pillar and a semiconductor layer extended from the semiconductor substrate to one sidewall of the first pillar.
Abstract:
A semiconductor device and a method for fabricating the same are provided to prevent a floating body effect and reduce coupling capacitance between buried bit lines. The semiconductor device comprises a first pillar disposed over a semiconductor substrate and including a vertical channel region, a bit line located in the lower portion of the vertical channel region inside the first pillar and a semiconductor layer extended from the semiconductor substrate to one sidewall of the first pillar.
Abstract:
A dynamic random access memory (DRAM) cell and the method of manufacturing the same are provided. The DRAM cell includes a cell transistor and a cell capacitor. The cell capacitor includes a first, second and third dielectric layer, and a first, second and third capacitor electrode. The first dielectric layer is located on a first capacitor electrode. The second capacitor electrode is located on top of the first dielectric layer. The second dielectric layer is located on the second capacitor electrode. The third capacitor electrode is located on the second dielectric layer and is electrically connected with the drain. The third dielectric layer is located between the third capacitor electrode and the gate for isolating the gate from the third capacitor electrode.
Abstract:
A dynamic random access memory (DRAM) cell and the method of manufacturing the same are provided. The DRAM cell includes a cell transistor and a cell capacitor. The cell capacitor includes a first, second and third dielectric layer, and a first, second and third capacitor electrode. The first dielectric layer is located on a first capacitor electrode. The second capacitor electrode is located on top of the first dielectric layer. The second dielectric layer is located on the second capacitor electrode. The third capacitor electrode is located on the second dielectric layer and is electrically connected with the drain. The third dielectric layer is located between the third capacitor electrode and the gate for isolating the gate from the third capacitor electrode.
Abstract:
A semiconductor device using a recessed step gate. An embodiment comprises a recessed region in a portion of the substrate, a transistor with one source/drain region located within the recessed region and one source/drain region located out of the recessed region, a storage device connected to the source/drain located out of the recessed region, and a bit line connected to the source/drain located within the recessed region.