Abstract:
The present invention relates to a method and apparatus that utilizes a reflective enclosure (10) to stimulate optical homogeneity in an otherwise inhomogeneous sample. The illumination sources (20) and sample are placed within the reflective enclosure (10), thus providing a method for examining a sample that is different from transmission, reflection or transflection. This apparatus and method are particularly well adapted to in vivo non-invasive testing for constituents of blood.
Abstract:
A new non-invasive non-spectrophotometric method for measuring the blood concentration of analytes such as glucose has been developed. The apparatus and methods of the invention exploit analogies with colorimetry and color perception to extract concentration measurements from the global structure of the intensity versus wavelength absorbance or transmission profile. A plurality of broad spectrum filters transmit distinguishably coded beams of radiation in overlapping portions of the spectrum to the sample. Radiation reflected or transmitted by the sample is detected and decoded. LED's may be used instead of the broad spectrum radiation generating device and the filters. Further, a scanning interferometer can be used as the illuminating and coding device. In a preferred mode, congruent illumination is utilized. The coded signals are analyzed by analogy to colorimetry and visual processing and can be converted into concentration measurements.
Abstract:
The absence of a defined optical path length for in vivo measurements create s problems for the noninvasive measurement of analyte concentration. These problems can be reduced by combining measurements made at several wavelength s and using the fact that normal renal function causes the concentration of water in whole blood to be tightly controlled. Hence, the concentration of water in arterial blood can serve as a useful internal standard for such measurements. The measurements are then procured so as to remove the dependency of concentration on path length traversed by the illuminating radiation and on the scattering properties of the volume through which the illuminating radiation propagates. Using this method, one can create improve d calibration for measurements of absorbing constituents in arterial blood and thereby provide absolute concentration measurements of constituents such as hemoglobin and glucose in arterial blood.
Abstract:
An improved method and apparatus for use in optical testing of concentration in samples has been developed. The apparatus restricts the solid angle of illumination and the solid angle of detection to eliminate a high proportion of the scattered radiation while allowing the ballistic radiation and the snake-like radiation to be transmitted. In samples which contain multiple scattering centers, this allows less correction for variations in effective pathlength and allows easier calibration of the apparatus. The use of polarized radiation as a means of minimizing scattered radiation in the sample is also disclosed.
Abstract:
Improvements in non-invasive detection methods for glucose and other constituents of interest in a sample have been developed. The apparatus and methods of the invention provide an analog of color perception of human vision, preferably in the near infrared region, replacing spectrophotometers and narrow band sources used in other non-invasive near infrared detection methods. A plurality of detector units are used, each covering a broad and overlapping region of the detected spectrum, paralleling color perception and colorimetry. The improvements are primarily concerned with improving the signal-to- background (or noise) ratio such that the data stream is improved. These improvements use congruent sampling, comparison of different data streams from different sample portions or filter sets, using an interrogation system with sufficient speed to allow testing of arterial blood, and using a filter with a spectral structure. In some circumstances, a neural net is used for analysis, allowing the system to learn. A novel method for background discrimination is also described.
Abstract:
Improvements in non-invasive detection methods for glucose and other constituents of interest in a sample have been developed. The apparatus and methods of the invention provide an analog of color perception of human vision, preferably in the near infrared region, replacing spectrophotometers and narrow band sources used in other non-invasive near infrared detection methods. A plurality of detector units are used, each covering a broad and overlapping region of the detected spectrum, paralleling color perception and colorimetry. The improvements are primarily concerned with improving the signal-to-background (or noise) ratio such that the data stream is improved. These improvements use congruent sampling, comparison of different data streams from different sample portions or filter sets, using an interrogation system with sufficient speed to allow testing of arterial blood, and using a filter with a spectral structure. In some circumstances, a neural net is used for analysis, allowing the system to learn. A novel method for background discrimination is also described.
Abstract:
The present invention relates to a method and apparatus that utilizes a reflective enclosure (10) to stimulate optical homogeneity in an otherwise inhomogeneous sample. The illumination sources (20) and sample are placed within the reflective enclosure (10), thus providing a method for examining a sample that is different from transmission, reflection or transflection. This apparatus and method are particularly well adapted to in vivo non-invasive testing for constituents of blood.
Abstract:
A non-invasive detection method for glucose and other constituents of interest in a sample is described. The apparatus and methods of the invention is based on an analog of color perception of human vision, preferably in the near infrared region, replacing the spectrometers used in other non-invasive near infrared detection methods. The sample is illuminated with broad spectrum illumination (104) and radiation form the sample is detected (106) using a plurality of detection units, each covering a broad region of the detected spectrum. A vector is generated from the detected radiation (108) and a correction vector obtained from a standard (100, 102, 109) is used with the detected vector to determine analyte concentration (110) using calibration based upon the results of in vitro measurements. A neutral network can be used for analysis, allowing the system to learn.