Abstract:
A torque pulsated variable cam timing camshaft arrangement for a reciprocating piston, internal combustion engine is provided. The arrangement includes a sprocket. A torque pulsated phaser unit is operatively associated with the sprocket. A camshaft is operatively associated with the sprocket and the camshaft torsionally powers the phaser unit. The camshaft has a cam lobe engaged with a first cam follower for controlling a position of a spring biased valve. A spring biased second cam follower is engaged with the cam lobe providing a torsional input to the camshaft.
Abstract:
An assembly for an engine comprising at least one phaser and a camshaft assembly. The camshaft assembly has an outer camshaft piece and an inner camshaft piece. The outer camshaft piece includes an outside cam integrally attached to the housing of the phaser through a middle portion. The outer camshaft piece also defines a hollow extending a length. The inner camshaft piece includes an inner cam adjacent to the outer cam. A tube portion extends from a first side of the inner cam and is received by the hollow of the outer camshaft piece, connecting the inner cam to the rotor of the phaser. A shaft portion extends to an end portion from the other side of the outer cam. A passage, connected to an inlet line is present within the inner camshaft piece, directing fluid to the control valve of the phaser.
Abstract:
A variable cam timing assembly (10) and method for an internal combustion engine of a motor vehicle includes a cam phaser (22) connected between an inner camshaft (12a) and an outer camshaft (12b) of a concentric camshaft (12). An axial face rotor seal (14) permits adjustment for perpendicularity and axial misalignment of the inner and outer camshafts (12a, 12b), while permitting a torsionally stiff coupling to be used between the cam phaser (22) and the inner and outer camshafts (12a, 12b) of the concentric camshaft (12). The axial face rotor seal (14) can be formed as separate rotor face seals (14a, 14b), vane tip seals (40), and partition member seals (44), and/or can be formed as a combination with abutting end (18a, 18b) of rotor face seals (14a, 14b) and/or overlapping ends (18e, 18f) of rotor face seal (14a, 14b) defining integral vane tip seal portions (40a, 40b) and/or integral partition member seal portions (44a, 44b).
Abstract:
A cam torque actuated variable cam timing phaser can include a rotor (20) enclosed by an endplate (64) within a housing (10). The housing (10) can have at least one cavity (10a) to be divided by a vane (22) rigidly attached to the rotor (20). The vane (22) can divide the cavity (10a) into a first chamber (16) and a second chamber (18). Passages (26, 28, 56, 58) can connect the first and second chambers (16, 18) facilitating oscillation of the vane (20) within the cavity (10a). A detent valve (50) can move between an open position and a closed position. When in the open position, the detent valve (50) can connect portions of a detent passage (56, 58) extending through the rotor (20) and through the endplate (64) allowing pressurized actuating fluid flow with respect to the first and second chambers (16, 18) in response to a relative angular position of the rotor (20) with respect to the endplate (64). A lock pin (60) can move between a locked position and a released position.
Abstract:
A variable cam timing assembly (10) and method for an internal combustion engine of a motor vehicle includes a cam phaser (22) connected between an inner camshaft (12a) and an outer camshaft (12b) of a concentric camshaft (12). An axial face rotor seal (14) permits adjustment for perpendicularity and axial misalignment of the inner and outer camshafts (12a, 12b), while permitting a torsionally stiff coupling to be used between the cam phaser (22) and the inner and outer camshafts (12a, 12b) of the concentric camshaft (12). The axial face rotor seal (14) can be formed as separate rotor face seals (14a, 14b), vane tip seals (40), and partition member seals (44), and/or can be formed as a combination with abutting end (18a, 18b) of rotor face seals (14a, 14b) and/or overlapping ends (18e, 18f) of rotor face seal (14a, 14b) defining integral vane tip seal portions (40a, 40b) and/or integral partition member seal portions (44a, 44b).
Abstract:
A camshaft assembly for an internal combustion engine has a hollow outer shaft with slots along its length and an inner shaft with holes along its length. The holes on the inner shaft are aligned with the slots on the outer shaft. A first set of cam lobes are fixed to the outer shaft and a second set of cam lobes are placed on the slots of outer shaft with a clearance fit. A means fixes the second set of cam lobes to the inner shaft, while simultaneously allowing the second set of cam lobes to be a clearance fit to the outer shaft. The means fixing the second set of cam lobes to the inner shaft may be a hollow pin which is hydroformed or a rivet insert which is expanded by insertion, pulling, and removal of a threaded rod.
Abstract:
A flexible coupling linkage (14) anchors a housing (16) that at least partially encloses a rotor (18) of an actuator (22) against rotation, while allowing free movement of the housing (16) in two other planes relative to the rotor (18) to match an angular rotational plane orientation of the rotor (18) to prevent binding between the housing (16) and the rotor (18) due to misalignment. The flexible coupling linkage (14) can be selected from a group of pivot joints (24a, 24b) including at least one of a pivot pin joint (30, 34), a ball-and-socket joint (32), and any combination thereof. The pivot joint (24) defines a restrained point (26a, 26b) associated with the housing (16) radially spaced from an axis of rotation of the rotor (18) preventing rotation of the housing (16) about the axis of rotation of the rotor (18), while allowing angular displacement of the housing (16) about the restrained point (26a, 26b) permitting the housing (16) to match an angle of the rotor (18) to prevent binding between the housing (16) and the rotor (18).
Abstract:
A flexible coupling linkage (14) anchors a housing (16) that at least partially encloses a rotor (18) of an actuator (22) against rotation, while allowing free movement of the housing (16) in two other planes relative to the rotor (18) to match an angular rotational plane orientation of the rotor (18) to prevent binding between the housing (16) and the rotor (18) due to misalignment. The flexible coupling linkage (14) can be selected from a group of pivot joints (24a, 24b) including at least one of a pivot pin joint (30, 34), a ball-and-socket joint (32), and any combination thereof. The pivot joint (24) defines a restrained point (26a, 26b) associated with the housing (16) radially spaced from an axis of rotation of the rotor (18) preventing rotation of the housing (16) about the axis of rotation of the rotor (18), while allowing angular displacement of the housing (16) about the restrained point (26a, 26b) permitting the housing (16) to match an angle of the rotor (18) to prevent binding between the housing (16) and the rotor (18).
Abstract:
An actuator for varying a compression ratio of an engine by varying by the rotary motion of a control shaft coupled to a variable compression ratio device. The actuator comprising: a housing assembly mounted to the engine; a rotor assembly coupled to the control shaft defining at least one vane separating a chamber in the housing assembly into a first chamber and a second chamber, the vane being capable of rotation to shift the relative angular position of the rotor assembly from a first rotational position associated with a first compression ratio to a second rotational position associated with a second compression ratio; and a control valve moveable to a first position in which torsional energy from the control shaft is permitted to rotate the rotor assembly in a direction from the first rotational position toward the second rotational position and to a second position opposite the first position.
Abstract:
An actuator for varying a compression ratio of an engine by varying by the rotary motion of a control shaft coupled to a variable compression ratio device. The actuator comprising: a housing assembly mounted to the engine; a rotor assembly coupled to the control shaft defining at least one vane separating a chamber in the housing assembly into a first chamber and a second chamber, the vane being capable of rotation to shift the relative angular position of the rotor assembly from a first rotational position associated with a first compression ratio to a second rotational position associated with a second compression ratio; and a control valve moveable to a first position in which torsional energy from the control shaft is permitted to rotate the rotor assembly in a direction from the first rotational position toward the second rotational position and to a second position opposite the first position.