Abstract:
Methods are provided for fabricating semiconductor IC (integrated circuit) chips having high-Q on-chip capacitors formed on the chip back-side and connected to integrated circuits on the chip front-side using through-wafer interconnects. In one aspect, a semico nductor device includes a semiconductor substrate having a front side, a back side, and a buried insulating layer interposed between the front and back sides of the substrate. An integrated circuit is formed on the front side of the semiconductor substrate, an integrated capacitor is formed on the back side of the semiconductor substrate, and an interconnection structure is formed through the buried insulating layer to connect the integrated capacitor to the integrated circuit.
Abstract:
A FEOL/MEOL metal resistor (32) that has tight sheet resistance tolerance (on the order of about 5% or less), high current density (on the order of about 0.5 mA/micron or greater), lower parasitics than diffused resistors and lower TCR than standard BEOL metal resistors as well as various methods of integrating such a metal resistor structure (32) into a CMOS technology are provided.
Abstract:
A method and structure for a MIM capacitor, the structure including: an electronic device, comprising: an interievel dielectric layer formed on a semiconductor substrate; a copper bottom electrode formed in the interievel dielectric layer, atop surface of the bottom electrode co-planer with a top surface of the interievel dielectric layer; a conductive diffusion barrier in direct contact with the top surface of the bottom electrode; a MIM dielectric in direct contact with a top surface of the conductive diffusion barrier; and a top electrode in direct contact with a top surface of the MIM dielectric. The conductive diffusion barrier may be recessed into the copper bottom electrode or an additional recessed conductive diffusion barrier provided. Compatible resistor and alignment mark structures are also disclosed.
Abstract:
Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer (102, 106) is formed above a lower conductor layer (100) and an upper conductor layer (104, 108) is formed above the dielectric layer. The invention then forms an etch stop layer (200) above the upper conductor layer and the dielectric layer, and forms a hardmask (202) (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist (300) is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
Abstract:
Disclosed is a method and structure for an integrated circuit structure that includes a plurality of complementary metal oxide semiconductor (CMOS) transistors (116) and a plurality of vertical bipolar transistors (118) positioned on a single substrate (110). The vertical bipolar transistors (118) are taller devices than the CMOS transistors (116). In this structure, a passivating layer (112) is positioned above the substrate (110), and between the vertical bipolar transistors (118) and the CMOS transistors (116). A wiring layer (120) is above the passivating layer (112). The vertical bipolar transistors (118) are in direct contact with the wiring layer (120) and the CMOS transistors (116) are connected to the wiring layer (114) by contacts extending through the passivating layer (112).
Abstract:
A method and structure for a MIM capacitor, the structure including: an electronic device, comprising: an interlevel dielectric layer formed on a semiconductor substrate; a copper bottom electrode formed in the interlevel dielectric layer, a top surface of the bottom electrode co-planer with a top surface of the interlevel dielectric layer; a conductive diffusion barrier in direct contact with the top surface of the bottom electrode; a MIM dielectric in direct contact with a top surface of the conductive diffusion barrier; and a top electrode in direct contact with a top surface of the MIM dielectric. The conductive diffusion barrier may be recessed into the copper bottom electrode or an additional recessed conductive diffusion barrier provided. Compatible resistor and alignment mark structures are also disclosed.
Abstract:
Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer (102, 106) is formed above a lower conductor layer (100) and an upper conductor layer (104, 108) is formed above the dielectric layer. The invention then forms an etch stop layer (200) above the upper conductor layer and the dielectric layer, and forms a hardmask (202) (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist (300) is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
Abstract:
A FEOL/MEOL metal resistor (32) that has tight sheet resistance tolerance (on the order of about 5% or less), high current density (on the order of about 0.5 mA/micron or greater), lower parasitics than diffused resistors and lower TCR than standard BEOL metal resistors as well as various methods of integrating such a metal resistor structure (32) into a CMOS technology are provided.