Abstract:
Provided is a method of manufacturing a capacitive electromechanical transducer using fusion bonding, which is capable of reducing fluctuations in initial deformation among diaphragms caused at positions having different boundary conditions such as the bonding area, thereby enhancing the uniformity of the transducer and stabilizing the sensitivity and the like. The method of manufacturing a capacitive electromechanical transducer includes: forming an insulating layer on a first silicon substrate and forming at least one recess; fusion bonding a second silicon substrate onto the insulating layer; and thinning the second silicon substrate and forming a silicon film. The method further includes, before the bonding of the second silicon substrate onto the insulating layer, forming a groove in the insulating layer at the periphery of the at least one recess.
Abstract:
Provided is a capacitive electromechanical transducer manufactured by fusion bonding, which is capable of enhancing the performance by reducing fluctuations in initial deformation among diaphragms caused at positions having difference boundary conditions such as the bonding area. The capacitive electromechanical transducer includes a device (101), the device including at least one cellular structure (102) including: a silicon substrate; a diaphragm; and a diaphragm supporting portion configured to support the diaphragm so that a gap is formed between one surface of the silicon substrate and the diaphragm. The device has, in its periphery, a groove (103) formed in a layer shared with the diaphragm supporting portion.
Abstract:
Provided is a method of manufacturing a capacitive electromechanical transducer using fusion bonding, which is capable of reducing fluctuations in initial deformation among diaphragms caused at positions having different boundary conditions such as the bonding area, thereby enhancing the uniformity of the transducer and stabilizing the sensitivity and the like. The method of manufacturing a capacitive electromechanical transducer includes: forming an insulating layer on a first silicon substrate and forming at least one recess; fusion bonding a second silicon substrate onto the insulating layer; and thinning the second silicon substrate and forming a silicon film. The method further includes, before the bonding of the second silicon substrate onto the insulating layer, forming a groove in the insulating layer at the periphery of the at least one recess.
Abstract:
An element array comprises a plurality of elements having a first electrode and a second electrode with a gap therebetween; the first electrode being separated for each of the elements by grooves, an insulating connection substrate being bonded to the first electrode, and a wiring being made from each of the respective first electrodes separated for each of the elements through the connection substrate to the side opposite to the first electrodes.
Abstract:
An element array comprises a plurality of elements having a first electrode and a second electrode with a gap therebetween; the first electrode being separated for each of the elements by grooves, an insulating connection substrate being bonded to the first electrode, and a wiring being made from each of the respective first electrodes separated for each of the elements through the connection substrate to the side opposite to the first electrodes.
Abstract:
A process for producing a capacitive electromechanical conversion device by bonding together a substrate and a membrane member to form a cavity sealed between the substrate and the membrane member, the process for producing a capacitive electromechanical conversion device comprises the steps of: providing a gas release path penetrating from a bonded interface between the substrate and the membrane member to the outside, and forming the cavity by bonding the membrane member with the substrate with the gas release path provided; the gas release path being provided at a location where the path does not communicate with the cavity.