Abstract:
Disclosed are a method for extracting the state density in a band gap of an amorphous oxide semiconductor thin film transistor, and a device therefor. The method for extracting the state density in a band gap of an amorphous oxide semiconductor thin film transistor according to an embodiment of the present invention comprises the steps of: measuring capacitance and conductance according to gate voltage relative to predetermined frequencies; calculating local capacitance formed by a local trap in a channel based on the measured capacitance and conductance; and extracting the state density in the band gap based on the calculated local capacitance. When the local capacitance is calculated, channel conductance formed at the channel is calculated using the measured capacitance and conductance. As the local capacitance is calculated based on the calculated channel conductance, entire state density in the band gap can be simply and rapidly extracted using only experimentally measured data without iteration procedures and complicated calculation. And local capacitance and free electrons capacitance can be separated quantitatively according to the gate voltage. [Reference numerals] (AA) Start; (BB) End; (S210) Measuring conductance and capacitance according to gate voltage relative to multiple frequencies; (S220) Calculating channel conductance formed at a channel by using the measured capacitance and conductance; (S230) Calculating local capacitance (C_loc) formed by a local trap in the channel based on the calculated channel conductance; (S240) Extracting state density in a band gap based on the calculated local capacitance
Abstract:
A method for extracting state density inside a band gap of a metal oxide semiconductor field effect transistor using an optical differential body factor and a device thereof are disclosed. The method for extracting the state density inside a band gap of a metal oxide semiconductor field effect transistor according to an embodiment of the present invention includes the steps of: measuring the drain current of a darkroom according to the gate voltage of the metal oxide semiconductor field effect transistor in the darkroom and measuring optical response drain current according to the gate voltage of the metal oxide semiconductor field effect transistor by irradiating the light of a predetermined light source; calculating a darkroom body factor according to the gate voltage using the measured darkroom drain current and calculating an optical response body factor according to the gate voltage using the measured optical response drain current; and extracting the state density inside a band gap of a metal oxide semiconductor field effect transistor based on the calculated darkroom body factor and the optical response body factor. The state density in an independent band of a threshold voltage gap can be extracted without omitting a complicated measurement process and the state density inside the band gap can be simply and rapidly extracted. [Reference numerals] (AA) Start; (BB) End; (S410) Measuring darkroom drain current according to gate voltage in a darkroom; (S420) Measuring optical response drain current according to gate voltage by radiating the light of a light source; (S430) Calculating a darkroom body factor using the darkroom drain current; (S440) Calculating the optical response body factor using the optical response drain current; (S450) Extracting the state density in the band gap based on the differentiation of the darkroom body factor and the optical response body factor