Abstract:
본 발명은 반도체 장치 및 그 제조 방법을 제공한다. 이 장치는 풀다운 트랜지스터의 소오스 영역 쪽의 코 임플란트 농도를 다른 곳보다 높게 함으로써, 포스트 어닐링 공정시에 소오스 영역 쪽의 헤일로 영역의 P형 불순물이 채널쪽으로 과도하게 확산되는 것을 방지하는 역할을 할 수 있다. 이로 인해, 각 단위 메모리 셀들 간의 포화 문턱 전압의 산포를 낮출 수 있다.
Abstract:
A test structure for inspecting an allowable process margin is provided to easily determine an allowable process margin of each unit process by comparing sub patterns in which a defect is generated. A plurality of grounded conductive lines(140) are grounded to a substrate(800), positioned on a substrate. A plurality of non-grounded conductive lines(120) are electrically isolated from the surface of the substrate, separated from the grounded conductive line by a first interval. A plurality of sub patterns check the allowable process margin of an integrated circuit fabricating process by using a voltage contrast between the grounded conductive line and the non-grounded conductive line. A measurement unit can measure the DC current flowing through the grounded conductive line and the non-grounded conductive line, electrically connected to the grounded conductive line and the non-grounded conductive line.
Abstract:
홀의 시스템적 결함율을 이용하는 반도체 집적 회로 장치의 수율 향상 방법이 제공된다. 반도체 집적 회로 장치의 수율 향상 방법은 홀과, 홀을 둘러싸는 라인에서, 마주보는 홀의 변과 라인의 변 사이의 거리에 대해서 복수의 실험값을 결정하고, 각 실험값을 대표하는 복수의 테스트 패턴을 웨이퍼 상에 형성하여, 복수의 테스트 패턴으로부터 홀의 실험값별 시스템적 결함율을 산출하고, 테스트 패턴의 홀의 변의 길이를 이용하여, 홀의 실험값별 시스템적 결함율을 홀의 길이당 실험값별 시스템적 결함율로 환산하고, 관심 레이아웃 내에서, 마주보는 홀의 변과 라인의 변 사이의 거리가 각 실험값에 해당하는 홀의 변의 길이를 실험값별로 산출하고, 홀의 길이당 실험값별 시스템적 결함율과, 관심 레이아웃 내에서 실험값별로 산출된 홀의 변의 길이를 이용하여, 홀의 시스템적 결함율을 산출하는 것을 포함한다. 수율, 결함율, 실험값, 홀, 라인, 실험값별 시스템적 결함율, 실험값별 랜덤 결함율
Abstract:
A method and a system for enhancing yield of semiconductor integrated circuit devices using systematic fault rate of a hole is provided to calculate the systematic fault rate using distances between sides of the hole and the opposite sides of a shape surrounding the hole. Plural experimental values each corresponding to a distance from a side of a hole to an opposing side of a shape surrounding the hole are determined(S10). Plural test patterns representing each of the experimental values on a wafer are formed, and experimental value-based systematic fault rates are calculated from the test patterns(S20). The experimental value-based systematic fault rates of the hole are converted into experimental value-based systematic fault rates per unit hole length using a length of the sides of the hole of each of the test patterns(S30). The length of the side of the hole for which a distance between the side of the hole and the opposing side of the shape corresponds to each of experimental values in a desired layout is calculated(S40). A systematic fault rate of the hole is calculated using the experimental value-based systematic fault rates per unit hole length and the length of the sides of the hole calculated for the each of experimental values in the desired layout(S50).
Abstract:
Provided is a semiconductor device. The semiconductor device comprises a semiconductor substrate including first and second areas, a first high permittivity pattern formed on the first area, a second high permittivity pattern formed on the second area and having a thickness equal to that of the first high permittivity pattern, a first work function control layer pattern formed on the first high permittivity pattern and having a first thickness, a second work function control layer pattern formed on the first work function control layer pattern and having a second thickness, a third work function control layer pattern formed on the second work function control layer pattern, having a third thickness less than the first thickness and having the same material as the first work function control layer pattern, and a fourth work function control layer pattern formed on the third work function control layer pattern, having a fourth thickness less than the second thickness and having the same material as the second work function control layer pattern.
Abstract:
반도체 집적 회로 장치의 레이아웃 분석 방법, 레이아웃 분석 시스템, 스탠다드 셀 라이브러리, 마스크 및 반도체 집적 회로 장치가 제공된다. 반도체 집적 회로 장치의 레이아웃 분석 방법은 복수의 관심 레이아웃 각각의 랜덤 결함율, 시스템적 결함율, 파라미터적 결함율 및 면적을 산출하고, 복수의 랜덤 결함율, 시스템적 결함율, 파라미터적 결함율 및 면적을 이용하여, 복수의 관심 레이아웃의 면적별 결함율을 산출하고, 복수의 관심 레이아웃의 면적별 결함율을 이용하여, 복수의 관심 레이아웃 중 수정할 관심 레이아웃을 선정하는 것을 포함한다. 랜덤 결함율, 시스템적 결함율, 파라미터적 결함율
Abstract:
A semiconductor device is provided. The semiconductor device includes at least one SRAM cell. Each SRAM cell includes a pull up transistor, a pull down transistor, and a pass gate transistor. The Tinv of the gate stack of the pass gate transistor is different from the Tinv of the gate stacks of the pull up transistor and the pull down transistor.
Abstract:
A method for correcting a layout of an integrated circuit design pattern and an apparatus for performing the same are provided to automatically correct the overall layout of a design pattern according to a certain criteria by using a combined defect characteristic function. A defect examination sample is selected from a substrate on which a plurality of processed patterns corresponding to design patterns are formed(S100). The processed patterns are classified according to a failure kind and stored per a failure unit in which a model pattern having a constant layout is designated(S200). The processed patterns stored per the failure unit are analyzed to create a plurality of defect characteristic functions which provides information regarding the generation degree of plural independent defects causing the failure(S300). A normalization coefficient is determined(S400). The normalization coefficient indicates the correlation between the defect characteristic functions. A single combined characteristic function is created based on the defect characteristic functions and the normalization coefficient(S500). The single combined characteristic function provides information regarding the generation degree of combined defects by taking into account the independent defects. The design pattern corresponding to the model pattern is evaluated on the basis of the single combined characteristic function and then corrected so as to minimize the generation degree of the combined defects(S600).
Abstract:
A method and a system for improving yield of a semiconductor integrated circuit device are provided to design a yield-maximized layout by using a fault rate of a calculated design rule to correct a layout of interest. A plurality of experimental design rule values with respect to a design rule are determined(S20). A fault rate of each experimental design rule value is measured(S30). The number of features corresponding to the respective experimental design rule values are counted within a layout of interest(S40). A fault rate of the design rule is provided by using the fault rate of the experimental design rule and the number of features(S50). The layout of interest is corrected by using the fault rate of the design rule(S70). The design rule out of the plurality of design rules is a critical factor with respect to yield.