Abstract:
A semiconductor memory device having respective self refresh pulses for banks is provided to prevent an excessive current from being applied on the bank by adjusting the period of the self refresh pulse according to the refresh characteristic of the bank. A semiconductor memory device having respective self refresh pulses for banks includes plural self refresh pulse generators(31~34). The self refresh pulse generator generates self refresh pulses having different pulse periods according to the refresh period of the respective banks. The semiconductor memory device includes plural row address counters(41~44), which receive the self refresh pulses, count the received signals, and output row address signals to the respective banks. Plural row decoders(51~54) receive the row address signals and allocate respective rows for the row address signals.
Abstract:
A self refresh control circuit, a semiconductor memory device including the same and a method of controlling self refresh are provided to reduce power consumption and to prevent refresh operation error, by controlling a word line enable signal and voltage supply timing in a self refresh mode. A refresh cycle control part(100a) generates a control signal indicating refresh cycle in response to a self refresh signal. A voltage generator(200a) generates an output voltage boosted at every refresh cycle in response to the control signal. A word line enable circuit(300a) generates a word line enable signal enabled at every refresh cycle after delay time required in boosting an output voltage of the voltage generator in response to the control signal.
Abstract:
A memory device having a common fuse block is provided to reduce the size of a memory chip by selectively adopting the function of a row fuse block or a column fuse block through the common fuse block. A bank(410,420,430,440) has a plurality of memory cells arranged in rows and columns. A common fuse block(416) includes a number of fuses, and is arranged in a busing path where row and column address signals of a bank cross each other. A redundancy memory block is arranged adjacent to the common fuse block, and has spare memory cells replacing a defective cell in the bank. The common fuse block includes a multiplexer generating a common fuse signal in response to the row address signals, the column address signals, a row control signal and a column control signal; and a common fuse part generating a row redundancy signal and a column redundancy signal by selectively cutting the fuses in response to the common fuse signal.
Abstract:
PURPOSE: A semiconductor device is provided to reduce current consumption by selectively operating a local sense amplifier which is used. CONSTITUTION: A plurality of control signal generating parts generate an enabled control signal when a column enable signal and a low enable signal are enabled. A plurality of local sense amplifiers(LSA_1) amplify the data of a local input/output line pair and output the data to a global input/output line in response to a control signal corresponding to a read/write signal.
Abstract:
본 발명은 전하 전달 소자의 바디 바이어스 전압을 선택적으로 제어하는 전하 전달 스위치 회로 및 이를 포함하는 승압 전압 발생 회로에 대하여 개시된다. 전하 전달 스위치 회로는, 전하 전달을 지시하는 제1 제어 신호와 제2 제어 신호에 의해 부스트되는 커패시터와, 전원 전압과 커패시터 사이에 연결되고 프리차아지 신호가 그 게이트에 연결되는 제1 트랜지스터와, 제1 노드와 제2 노드 사이에 연결되고 커패시터의 다른 일단이 그 게이트에 연결되는 제2 트랜지스터와, 제1 노드와 제2 트랜지스터의 벌크 사이에 연결되고 제1 제어 신호가 그 게이트에 연결되는 제3 트랜지스터와, 그리고 제2 트랜지스터의 벌크와 접지 전압 사이에 연결되고 제2 제어 신호가 그 게이트에 연결되는 제4 트랜지스터를 포함한다. 전하 전달 스위치 회로는, 전하 전달시, 제2 트랜지스터의 벌크를 그 드레인인 제1 노드에 연결하여 제2 트랜지스터의 문턱 전압을 낮추어 전하 전달 효율을 높인다. 그리고, 전하 전달 스위치 회로는, 프리차아지 동작시, 제2 트랜지스터의 벌크를 접지 전압으로 연결시켜 제2 트랜지스터의 문턱 전압을 높여 제2 트랜지스터를 통한 전하 역류를 방지한다. 승압 전압 발생 회로, 전하 전달 스위치 회로, 바디 바이어스 전압
Abstract:
A voltage converter using both standby voltage converter and active voltage converter during power-up is provided to prevent delay due to a difference of an external voltage apply speed and an operation voltage setting speed by simultaneously outputting a standby voltage and an active voltage in a power-up mode. A voltage converter(100) using both standby voltage converter and active voltage converter during power-up includes a standby voltage converter(120) and an active voltage converter(140). The standby voltage converter(120) converts an external voltage to a standby voltage(VSTN) of an operation voltage(VOPE) in a standby mode. The active voltage converter(140) converts the external voltage to an active voltage(VACT) of the operation voltage(VOPE) in an active mode. The voltage converter(100) simultaneously outputs the standby voltage(VSTN) and the active voltage(VACT) in a power-up mode.
Abstract:
셀프 리프레시 펄스 생성 장치 및 이를 구비하는 반도체 메모리 장치가 개시되어 있다. 셀프 리프레시 펄스 생성 장치는, 반도체 메모리 장치에 구비된 N개의 뱅크의 셀프 리프레시를 수행하기 위한 표준 셀프 리프레시 펄스를 생성하는 표준 셀프 리프레시 펄스 발생부; 및 상기 생성된 표준 셀프 리프레시 펄스를 입력받고, 상기 각 뱅크의 셀프 리프레시 주기에 따라 상기 입력된 표준 셀프 리프레시 펄스의 주기를 변환시켜 N개의 뱅크 셀프 리프레시 펄스를 생성한 뒤, 상기 생성된 각 뱅크 셀프 리프레시 펄스를 대응되는 뱅크 측으로 전송하는 뱅크별 셀프 리프레시 신호 발생부로 구성된다. 따라서, 각 뱅크의 셀프 리프레시 주기 특성에 따른 각각의 뱅크에 대응되는 뱅크 셀프 리프레시 펄스를 생성하고, 그 주기에 따른 셀프 리프레시를 수행할 수 있다.
Abstract:
A semiconductor device capable of controlling the number of enabled drivers and a method thereof are provided to control the number of drivers enabled according to the variation of operation frequency or surrounding temperature of the semiconductor device. A detection signal generator(11) generates a detection signal by detecting operation frequency of a semiconductor device. A plurality of drivers(15) supplies a corresponding internal voltage to a memory cell array in response to an enable signal. At least one transmission control circuit(13) controls to transmit the enable signal to at least one driver of the plurality of drivers in response to the detection signal.
Abstract:
A charge transfer switching circuit which controls a body bias voltage of a charge transfer device selectively and a boosting voltage generating circuit including the same are provided to increase charge transfer efficiency during a charge transfer operation by controlling a bulk voltage of a transistor in the charge transfer switching circuit selectively. A first inverter(511) receives a first control signal indicating charge transfer and generates a second control signal. A second inverter(512) receives the second control signal. One end of a capacitor(513) is connected to the output of the second inverter. A first transistor(515) is connected between a power supply voltage and the other end of the capacitor, and a precharge signal is connected to a gate of the first transistor. A second transistor(516) is connected between a first node and a second node, and the other end of the capacitor is connected to a gate of the second transistor. A third transistor(517) is connected between the first node and a bulk of the second transistor, and the first control signal is connected to a gate of the third transistor. A fourth transistor(518) is connected between a bulk of the second transistor and a ground voltage, and the second control signal is connected to a gate of the fourth transistor.