Abstract:
본 발명은 연속적으로 촬영된 컴퓨터 단층촬영(Computed Tomography, CT) 영상의 각 슬라이스를 정합함으로써 연속 CT 영상 내의 폐결절 (Pulmonary Nodule)을 추적 관찰하는 방법 및 그 장치를 제공할 수 있다. 본 발명은 폐를 포함하는 최적경계볼륨의 중심 좌표를 기반으로 기준 영상에 대한 추적 영상의 위치를 보정하는 단계, 기준 영상 및 추적 영상 간의 관상(coronal) 최대강도 투사영상 간의 비교 결과 및 시상(sagittal) 최대강도 투사영상 간의 비교 결과에 기반하여 상기 기준 영상 및 상기 추적 영상을 강체 정합하는 단계, 및 상기 기준 영상 및 상기 추적 영상 내의 폐결절의 형태 정보 및 주변 지역 정보에 기반하여 상기 기준 영상 및 상기 추적 영상을 템플릿 정합하는 단계를 포함할 수 있다. 컴퓨터 단층촬영 영상, 폐결절, 관상 최대강도 투사, 시상 최대강도 투사, 강체 정합, 템플릿 매칭
Abstract:
PURPOSE: A pulmonary nodule multistage matching method of a serial computer tomography scan and a method thereof are provided to reduce time for matching computed tomography images by using a coronal maximum intensity projection image and a sagittal maximum intensity projection image. CONSTITUTION: A tracing image location according to a reference image is compensated based on the center coordinate of an optimum boundary volume(S110). A coronal maximum intensity projection image of the reference image and a coronal maximum intensity projection image of the tracing image are compared. A sagittal maximum intensity projection image of the reference image and a sagittal maximum intensity projection image of the tracing image are compared(S120). The reference image and the tracing image are matched(S130). The reference image and the tracing image are matched to a template(S140).
Abstract:
PURPOSE: A method and an apparatus of diagnosing prostate cancer using a histopathology image and a magnetic resonance image are provided to improve recognition of a tumor area of a T2-weighted magnetic resonance image by dense correction. CONSTITUTION: A histopathology image correcting unit(11) generates and corrects the entire histopathology image. The histopathology image correcting unit includes a section engaging unit(112) and a resolution lowering unit(114). A magnetic resonance image correcting unit(13) corrects a T2-weighted magnetic resonance image. The magnetic resonance image correcting unit includes a bleeding area extracting unit(132) and a bleeding area substitution unit(134). A matching processing unit(15) includes the first matching unit(152), the second matching unit(154) and the third matching unit(156).
Abstract:
PURPOSE: A nonrigid registration method and system applying the tumor rigidity constraint and the density correction of each tissue in a dynamic contract enhanced breast MR image are provided to accurately classify a tissue by regularizing a contrast density. CONSTITUTION: A breast region is automatically divided by removing a breast skin and a pectoral(S110). A fuzzy C-means grouping method is used in the divided breast region. A breast tissue is classified into fat, the mammary gland, a tumor, and a blood vessel(S120). The tumor is divided by using a density and a morphological operation(S130). The density is corrected in the fat and the mammary gland(S140). [Reference numerals] (AA) Start; (BB) End; (S110) Breast division based on slope and direction information; (S120) Tissue classification using a fuzzy C-means grouping method; (S130) Tumor division based on brightness value and shape information; (S140) Rigid body matching based on normalized mutual information and brightness value correction; (S150) Non-rigid body matching applying tumor rigid constraints;
Abstract:
PURPOSE: A method and an apparatus of diagnosing prostate cancer using a histopathology image and a magnetic resonance image are provided to improve recognition of a tumor area of a T2-weighted magnetic resonance image by dense correction. CONSTITUTION: A histopathology image correcting unit(11) generates and corrects the entire histopathology image. The histopathology image correcting unit includes a section engaging unit(112) and a resolution lowering unit(114). A magnetic resonance image correcting unit(13) corrects a T2-weighted magnetic resonance image. The magnetic resonance image correcting unit includes a bleeding area extracting unit(132) and a bleeding area substitution unit(134). A matching processing unit(15) includes the first matching unit(152), the second matching unit(154) and the third matching unit(156).
Abstract:
본 발명은 방사선치료계획을 위한 4D CT 영상에서 호흡이 다른 CT 영상 간 비강체 정합을 통한 자동 폐종양 위치 추적 방법에 관한 것으로, 본 발명에 따른 4차원 컴퓨터 단층촬영 영상의 폐종양 위치 추적 시스템은 4D CT의 각 위상영상에서 폐 분할 후, 최대흡기 및 최대호기 위상영상 간 폐 경계 정보를 이용하여, 어파인 정합을 수행하고, 호흡량에 따라 어파인 변환벡터를 산출하는 변환벡터 예측부 및 상기 변환벡터 예측부에서 산출된 어파인 변환벡터와 위상영상 간 비강체 정합으로 산출된 변형벡터로 폐종양의 위치를 자동 추적하는 폐종양 위치 추적부를 포함하는 것을 기술적 특징으로 한다.
Abstract:
PURPOSE: A system for analyzing perfusion in a dynamic enhanced focus lung computerized tomography image and a method thereof are provided to accurately and efficiently separate solitary pulmonary nodule by applying proper curvature and shape information based algorithm according to a type of solitary pulmonary nodule. CONSTITUTION: A solitary pulmonary nodule candidate area is extracted from a type of solitary pulmonary nodule determined from a lung computerized tomography image(210). The solitary pulmonary nodule is divided by separating surrounding tissues from the solitary pulmonary nodule candidate area(212). An image before dynamic enhanced focus and an image after dynamic enhanced focus are initially matched with each other by using a central point of the solitary pulmonary nodule(214). The initial matching is corrected through rigid matching based on mutual information(216). The solitary pulmonary nodule divided from the image before dynamic enhanced focus is regionalized(218). Perfusion analysis is performed by using an average brightness value for each region(220). [Reference numerals] (210) Extracting a solitary pulmonary nodule candidate area; (212) Dividing a solitary pulmonary nodule by separating surrounding tissues; (214) Initially matching enhanced images before and after dynamic enhanced focus with each other; (216) Correcting the initial matching; (218) Regionalizing the divided solitary pulmonary nodule; (220) Performing perfusion analysis using an average brightness value for each region; (AA,BB) Start;