다이아몬드 n형 반도체, 그의 제조 방법, 반도체 소자 및전자 방출 소자
    1.
    发明公开
    다이아몬드 n형 반도체, 그의 제조 방법, 반도체 소자 및전자 방출 소자 无效
    金刚石N型半导体,其制造方法,半导体元件和电子发射元件

    公开(公告)号:KR1020060122868A

    公开(公告)日:2006-11-30

    申请号:KR1020067010086

    申请日:2004-11-17

    CPC classification number: H01L29/1602 H01J1/308

    Abstract: There is provided a diamond n-type semiconductor whose carrier concentration change amount is sufficiently reduced in a wide temperature range. The diamond n-type semiconductor includes a diamond substrate and a diamond semiconductor formed on the main surface of the diamond substrate and judged to be n-type. The diamond semiconductor has a carrier concentration (electron concentration) temperature dependency showing a negative correlation and a hole coefficient temperature dependency showing a positive correlation at a part of the temperature range where it is judged to be n-type. The diamond n-type semiconductor having such characteristics can be obtained, for example, by forming a diamond semiconductor doped with a plenty of donor element while introducing impurities other than the donor element into the diamond substrate.

    Abstract translation: 提供了在宽温度范围内载流子浓度变化量充分降低的金刚石n型半导体。 金刚石n型半导体包括形成在金刚石基板的主表面上的金刚石基底和金刚石半导体,并被判定为n型。 金刚石半导体具有显示负相关性的载流子浓度(电子浓度)温度依赖性和在判断为n型的温度范围的一部分呈现正相关性的空穴系数温度依赖性。 具有这种特性的金刚石n型半导体可以例如通过形成掺杂有大量施主元素的金刚石半导体,同时将施主元素以外的杂质引入到金刚石基底中来获得。

    n형 반도체 다이아몬드의 제조 방법 및 n형 반도체 다이아몬드
    4.
    发明公开
    n형 반도체 다이아몬드의 제조 방법 및 n형 반도체 다이아몬드 无效
    制造N型半导体金刚石和N型半导体金刚石的方法

    公开(公告)号:KR1020060096177A

    公开(公告)日:2006-09-08

    申请号:KR1020057004098

    申请日:2003-12-22

    CPC classification number: H01L21/0415 C30B29/04 H01L21/265 H01L29/167

    Abstract: A process for producing an n-type semiconductor diamond characterized in that a single crystal of diamond containing 10 ppm or more of N is implanted with ions so as to contain 10 ppm or above of Li, or a single crystal of diamond is implanted with Li and N ions such that the ion implantation depths where the concentrations of Li and N are 10 ppm or above after ion implantation overlap each other to produce a diamond containing Li and N, and then the diamond is heat treated in a temperature range at least 800°C and less than 1800°C thus activating Li and N electrically and restoring the crystal structure of diamond. The n-type semiconductor diamond contains 10 ppm or more of Li and N, respectively, at the same depth from the crystal surface and has a sheet resistance of 107Omega/□ or less.

    Abstract translation: 一种制造n型半导体金刚石的方法,其特征在于,将含有10ppm以上的N的金刚石的单晶注入含有10ppm以上的Li的离子,或者将Li的单晶注入Li 和N离子,使得在离子注入之后Li和N的浓度为10ppm或更高的离子注入深度彼此重叠以产生含有Li和N的金刚石,然后在至少800的温度范围内对金刚石进行热处理 ℃且小于1800℃,从而电激活Li和N并恢复金刚石的晶体结构。 n型半导体金刚石在与晶体表面相同的深度处分别含有10ppm以上的Li和N,并且具有107Omega /□以下的薄层电阻。

    저저항 n형 반도체 다이아몬드 및 그 제조 방법
    5.
    发明公开
    저저항 n형 반도체 다이아몬드 및 그 제조 방법 无效
    低电阻NTYPE半导体金刚石及其制造方法

    公开(公告)号:KR1020050084776A

    公开(公告)日:2005-08-29

    申请号:KR1020047013528

    申请日:2003-12-22

    Abstract: A diamond doped with lithium, especially a low-resistance n type semiconductor diamond doped with lithium and nitrogen; and a process for producing the same. In particular, a low- resistance n type semiconductor diamond containing lithium atoms and nitrogen atoms both in an amount of 1017 cm-3 or more, which low-resistance n type semiconductor diamond has such a structure that carbon atom interstitial positions thereof are doped with lithium atoms while carbon atom substitution positions thereof are doped with nitrogen atoms, the lithium atoms and nitrogen atoms disposed adjacent to each other. The low-resistance n type semiconductor diamond can be obtained through a process comprising in a diamond vapor-phase synthetic process, photolyzing a raw material according to a photoexcitation technique using vacuum ultraviolet radiation while with respect to a lithium material, exposing the same to excimer laser so as to effect scattering and supply of lithium atoms.

    Abstract translation: 掺杂锂的金刚石,特别是掺杂有锂和氮的低电阻n型半导体金刚石; 及其制造方法。 特别地,低电阻n型半导体金刚石具有碳原子间隙位置掺杂的结构,其含有量为1017cm-3以上的锂原子和氮原子的低电阻n型半导体金刚石 锂原子,其碳原子取代位置被掺杂有氮原子,锂原子和氮原子彼此相邻配置。 低电阻n型半导体金刚石可以通过包括金刚石气相合成工艺的方法获得,根据使用真空紫外线照射的光激发技术对原材料进行光解,同时将其暴露于准分子 激光以实现锂原子的散射和供应。

Patent Agency Ranking