Abstract:
본 발명은 상호침투형 복합구조를 가지는 고체산화물 연료전지(SOFC)의 연료극 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 세라믹 분말 입자 주위에 니켈 분말이 침착된 코아-쉘 구조로 된 복합분말을 이용하여 제조되어 그 구성상인 세라믹 결정립, 니켈의 결정립 및 기공이 균일한 크기를 가지고, 상기 구성상 상호간의 연속적인 네트워크 형태로 구성된 상호침투형 복합구조를 가짐으로써, 장기 안정성, 열 싸이클 안정성, 산화환원 안정성 및 기계적 물성이 현저히 향상된, 상호침투형 복합구조를 가지는 고체산화물 연료전지의 연료극 및 이의 제조방법에 관한 것이다. 연료극, 상호침투형 복합구조, 안정성, 기계적 물성
Abstract:
고체산화물 연료전지용 음극기판 제조방법이 개시된다. 개시된 고체산화물 연료전지용 음극기판 제조방법은, (a) 구성분말과 결합제로 이루어진 비수계 슬러리 조성에서 분말 응집체를 분리시키고 구성물질들이 균일하게 혼합된 슬러리를 준비하는 단계와; (b) 상기 슬러리를 결합제에 대한 용해도가 거의 없거나, 부분적인 용해가 가능한 비용매에 분무하여 분말과 결합제가 균일한 분포를 가지는 과립을 제조하는 단계와; (c) 건조된 상기 과립을 금속 몰드에 채우고, 가압하여 원하는 형상의 음극을 제조하는 단계와; (d) 성형된 상기 음극으로부터 결합제를 제거하고, 소결하는 단계;를 포함하는 것을 그 특징으로 한다. 본 발명에 따르면, 대면적 음극기판 제조가 가능하고, 기공의 연결도 및 기체투과도가 높으며, 높은 전기전도도를 구현할 수 있는 이점이 있다.
Abstract:
고체산화물 연료전지용 음극기판 제조방법이 개시된다. 개시된 고체산화물 연료전지용 음극기판 제조방법은, (a) 구성분말과 결합제로 이루어진 비수계 슬러리 조성에서 분말 응집체를 분리시키고 구성물질들이 균일하게 혼합된 슬러리를 준비하는 단계와; (b) 상기 슬러리를 결합제에 대한 용해도가 거의 없거나, 부분적인 용해가 가능한 비용매에 분무하여 분말과 결합제가 균일한 분포를 가지는 과립을 제조하는 단계와; (c) 건조된 상기 과립을 금속 몰드에 채우고, 가압하여 원하는 형상의 음극을 제조하는 단계와; (d) 성형된 상기 음극으로부터 결합제를 제거하고, 소결하는 단계;를 포함하는 것을 그 특징으로 한다. 본 발명에 따르면, 대면적 음극기판 제조가 가능하고, 기공의 연결도 및 기체투과도가 높으며, 높은 전기전도도를 구현할 수 있는 이점이 있다.
Abstract:
본 발명은 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것으로써, 보다 상세하게는 유리 분말에 세라믹 섬유상 입자를 분산시킨 후 열처리 공정을 거치게 하여 용융된 유리 분말이 세라믹 섬유상 입자 사이의 기공을 채우게 됨과 동시에 세라믹 섬유상 입자에 배향성을 부여하게 되고, 이를 가스켓 형태로 제조하여 고체산화물 연료전지의 스택을 구성하는 단위전지 층간의 밀봉부위에 정확하게 위치시킨 후 가압가열하는 간단한 공정으로 높은 기밀성을 발현시킬 수 있는 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것이다. 본 발명에 의한 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재는 섬유상 세라믹 입자의 충전구조에 의하여 기지인 유리상의 점성유동을 효율적으로 억제할 수 있으며, 연료전지의 스택을 구성하는 단위전지의 층간 밀봉부위에 정확하게 위치시킬 수 있고, 또한 스택의 크기에 따른 압력변화에서도 고른 기밀성을 유지할 수 있는 효과가 있다. 고체산화물, 연료전지, 스택, 유리, 세라믹 섬유
Abstract:
본 발명은 상호침투형 복합구조를 가지는 고체산화물 연료전지(SOFC)의 연료극 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 세라믹 분말 입자 주위에 니켈 분말이 침착된 코아-쉘 구조로 된 복합분말을 이용하여 제조되어 그 구성상인 세라믹 결정립, 니켈의 결정립 및 기공이 균일한 크기를 가지고, 상기 구성상 상호간의 연속적인 네트워크 형태로 구성된 상호침투형 복합구조를 가짐으로써, 장기 안정성, 열 싸이클 안정성, 산화환원 안정성 및 기계적 물성이 현저히 향상된, 상호침투형 복합구조를 가지는 고체산화물 연료전지의 연료극 및 이의 제조방법에 관한 것이다. 연료극, 상호침투형 복합구조, 안정성, 기계적 물성
Abstract:
본 발명은 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것으로써, 보다 상세하게는 유리 분말에 세라믹 섬유상 입자를 분산시킨 후 열처리 공정을 거치게 하여 용융된 유리 분말이 세라믹 섬유상 입자 사이의 기공을 채우게 됨과 동시에 세라믹 섬유상 입자에 배향성을 부여하게 되고, 이를 가스켓 형태로 제조하여 고체산화물 연료전지의 스택을 구성하는 단위전지 층간의 밀봉부위에 정확하게 위치시킨 후 가압가열하는 간단한 공정으로 높은 기밀성을 발현시킬 수 있는 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것이다. 본 발명에 의한 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재는 섬유상 세라믹 입자의 충전구조에 의하여 기지인 유리상의 점성유동을 효율적으로 억제할 수 있으며, 연료전지의 스택을 구성하는 단위전지의 층간 밀봉부위에 정확하게 위치시킬 수 있고, 또한 스택의 크기에 따른 압력변화에서도 고른 기밀성을 유지할 수 있는 효과가 있다.
Abstract:
본 발명의 복합 밀봉재는, 기밀성은 우수하지만 파괴저항성이 낮은 유리의 파괴인성을 증가시켜 스택의 기밀성을 유지하면서 열싸이클 안정성을 향상시킨다. 이를 위해, 유리 기지상에 알파 알루미나 섬유상 입자, 알파 알루미나 입자상 입자, 금속 입자를 혼합하여 첨가함으로써, 섬유상 및 입자상 알루미나 입자에 의한 균열편향 및 균열가교 효과와, 금속 입자에 의한 균열유인 및 소성변형 효과를 통해 파괴인성을 0.5 MPa·m 0.5 에서 6 MPa·m 0.5 까지 현저히 증가시킬 수 있다. 본 발명의 고 파괴인성 복합 밀봉재를 사용하는 경우, 스택 내의 불균일 온도 분포나 열싸이클 운전에서 발생하는 열응력 하에서도 스택의 기밀성과 안정성을 유지할 수 있기 때문에, 복합 밀봉재의 파괴인성 증가는 대면적 스택의 신뢰성 향상을 위한 가장 중요한 요소로 작용한다. 밀봉재, 평판형 고체산화물 연료전지, 파괴인성, 스택
Abstract:
A composite sealing material for a flat solid oxide fuel cell, and a method for preparing the composite sealing material are provided to improve the heat cycle stability without the deterioration of a stack by increasing the fracture toughness of glass. A composite sealing material for a flat solid oxide fuel cell comprises a glass matrix; and 5-50 vol% of an alpha-alumina fibrous reinforcing material which has an average crystal particle size of 0.2 micrometers or more and an aspect ratio of 10-100 and is contained in the glass matrix. Preferably the composite sealing material comprises further a granular alpha-alumina powder; and/or any one metal powder selected from silver(Ag), palladium(Pd), gold(Au), platinum(Pt), nickel(Ni), Fe-Ni alloy and molybdenum(Mo).
Abstract:
An equivalent large-area fuel cell is provided to produce a high output value equal to an ideal large-area unit cell through a constraint condition of a compressive sealant and a planar array of high-efficiency small-area unit cells. An equivalent large-area fuel cell includes: a first separator(11a) having a groove formed on the inner surface thereof; many first electrodes(33a) which are fitted in the groove of the first separator and are arrayed on a co-plane; many electrolytes(32a) which are placed on the many first electrodes, respectively; many second electrodes which are placed on the many electrolytes, respectively; a second separator(10a) which covers the many second electrodes; and a compressive sealant which is interposed between the first separator and the second separator and puts the two separators together.