Abstract:
본 발명의 목적은 LNG 연료 추진 선박의 엔진을 가동시 배출되는 고온의 연소 가스로부터 이산화탄소를 포집 및 액화하는데 필요한 에너지를 LNG로부터 제공받고, LNG를 기화하는데 필요한 열을 연소 가스의 고온으로부터 제공받을시 LNG 냉열을 제공받아 효율적으로 이산화탄소를 포집 및 액화할 수 있는 LNG 연료 추진 선박에서 배출되는 이산화탄소를 포집하여 액화하는 시스템 및 방법을 제공하는 것이다. 상기 목적을 달성하기 위해, 본 발명에 따른 LNG 연료 추진 선박에서 배출되는 이산화탄소를 포집하여 액화하는 시스템은, 공급되는 LNG 연료와 공기를 이용하여 선박을 추진시키는 엔진부; 상기 엔진부에 의해 배출되는 연소 가스를 건조시키는 건조부; 상기 건조부에 의해 건조되는 연소 가스의 압력을 높이는 압축기; 상기 압축기에 의해 압축된 연소 가스를 LNG로부터 제공받는 LNG 냉열에 의해 액화시키고, 상기 연소 가스의 열에 의해 상기 LNG를 기화시키는 열교환부; 및 액화된 상기 연소 가스로부터 이산화탄소를 분리하는 분리부;를 포함하는 것을 특징으로 한다.
Abstract:
PURPOSE: Simulation apparatus for verifying the influence of a bending tube on a pipeline transporting process in carbon dioxide marine geological storage is provided to reduce negative influences on a transporting process caused by changes in external environment. CONSTITUTION: Simulation apparatus includes a first evaporator (2), a first reciprocating high pressure compressor (3), a first accumulator (4), a first pressure controller (5), a high pressure heat exchanger (6), a liquid receiver (7), a first flux control valve (10), a reactor (11), an impurity flowing unit, and an experimental unit (23). The first evaporator exchanges heat between liquid carbon dioxide and the atmosphere to obtain gaseous carbon dioxide. The first reciprocating high pressure compressor compresses the gaseous carbon dioxide. The first accumulator reduces the pressure ripples of the gaseous carbon dioxide. The first pressure controller decompresses the gaseous carbon dioxide. The high pressure heat exchanger changes the decompressed carbon dioxide into liquid carbon dioxide. The liquid receiver receives the liquid carbon dioxide through the high pressure heat exchanger and protects the liquid carbon dioxide from changing into the gaseous carbon dioxide. The first flux control valve controls the flux of the liquid carbon dioxide through the liquid receiver. The reactor receives the liquid carbon dioxide through the first flux control valve and water in order to implement a hydrate reaction. The impurity flowing unit transfers the carbon dioxide through the reactor and bypasses gaseous impurities. Two horizontal tubes (23a,23b) and two vertical U-tubes (23c,23d) are serially connected in the experimental unit.
Abstract:
PURPOSE: A simulation method using a vertical U-shaped pipe and a horizontal pipe for grasping effects of a bent pipe to a pipeline transport process of carbon dioxide marine geological storage is provided to simulate changes in an external environment condition caused by properties of the heat transmission of soil where the pipe is buried and a seasonal change by using, thereby enabling to grasp a pressure decrease and heat transmission properties when transporting carbon dioxide. CONSTITUTION: A simulation method using a vertical U-shaped pipe and a horizontal pipe for grasping effects of a bent pipe to a pipeline transport process of carbon dioxide marine geological storage(1) is as follows. A first evaporator(2) heat exchanges liquid carbon dioxide supplied from the liquid carbon dioxide storage with air, thereby converting into gaseous carbon dioxide. A first reciprocating high-pressure(3) compresses the gaseous carbon dioxide at high pressures. A first accumulator(4) reduces the pressure pulsation of the gaseous carbon dioxide of high pressures. A high pressure heat exchanger(6) converts the decompressed carbon dioxide into liquid carbon dioxide. A liquid receiver(7) receives the liquid carbon dioxide of high pressures and prevents the liquid carbon dioxide from evaporated. A first flow rate control valve(10) regulates a flowing area of the liquid carbon dioxide, applies flow resistance, and regulates a flow rate of the carbon dioxide supplied to an experimental unit(23). A reactor receives the liquid carbon dioxide and receives extra water from a water supply unit, thereby performing a hydrate reaction experiment.
Abstract:
본발명은이산화탄소해양지중저장을위한임시저장탱크내부에발생하는액체층의온도성층화를억제할수 있는장치이다. 본발명에따르면히트파이프를이용하여, 추가적인에너지유입이나소비없이, 임시저장탱크내부의액체층에발생하는온도성층화를효과적으로억제할수 있으며, 이를통해임시저장탱크내부의압력상승을억제하고임시저장탱크의건설비용을절감하며운영효율성을향상시킬수 있다.
Abstract:
A method for detecting the leakage of CO_2 stored in the submarine sediment using shape change measurement comprises: (A) a step of measuring the radius of CO_2 bubbles which pass the lower part of a CO_2 bubble detector located in the seabed; (B) a step of measuring the radius of CO_2 bubbles which pass the upper part of the bubble detector; and (C) a step of calculating the reduction rate of the radius of the bubble obtained in steps (A) and (B). Steps (A) and (B) can be a step of measuring the radius of a CO_2 bubble image photographed by a camera which is installed in the CO_2 bubble detector. The photography of the CO_2 bubble in steps (A) and (B) is desirably to photograph a bubble image which is reflected by an optical tube assembly of a CO_2 bubble discharge detector. In addition, the method can determine whether or not CO_2 stored in the submarine sediment is secondarily leaked into the air, from the depth of water and the reduction rate of the radius of the CO_2 bubble obtained by a calculating unit. [Reference numerals] (AA) Start; (BB) End; (S100) Measure the radius of CO_2 bubbles in the seabed; (S120) Measure the radius of CO_2 bubbles in the upper part separated at a fixed distance; (S140) Determine whether or not CO_2 is leaked into the air based on the depth of water and the reduction rate of the radius of the CO_2 bubble
Abstract:
The present invention relates to a heat exchanger for seawater of a cross counter flow to which electrophoretic painting is applied. The heat exchanger, in detail, is formed in a structure in which high temperature water and low temperature water are layered by using a square pipe. The heat exchanger has the same width, length, and height to be a regular hexahedron so that the electrophoretic painting is exposed by the force of gravity in a short time on the all surfaces of the heat exchanger. The heat exchanger also filters various contaminants contained in the seawater as a net type mesh is mounted on the inside of a U-bender of the heat exchanger. The growth of the contaminants attached to the inside of the heat exchanger is suppressed, and intrinsic functions of the heat exchanger are maintained. The heat exchanger is designed to be conveniently assembled or disassembled by being connected with a bolt in order to be conveniently maintained. The heat exchanger for the seawater of the cross counter flow maintaining a horizontal width and a vertical width to be the same increases a heat exchange area by using a square pipe and includes an inner hole capable of controlling an internal pressure and a flow rate of the heat exchanger by forming an inner connection hole in order to evenly exchange the heat by minimizing the pressure difference and the flow rate difference in each pipe. A plurality of square pipes is arranged in a header of the heat exchanger so that a fluid amount flowing in the pipe becomes different according to a position of the header of the heat exchanger. To solve this problem, the present invention is characterized in that the drawn fluid amount is maintained by changing the internal pressure of the header as the drawn part of the header becomes large, and the end becomes narrow. [Reference numerals] (AA,DD) Coolant;(BB,CC) Sea water
Abstract:
본 발명은 지구온난화와 기후변화를 유발시키는 대표적 온실가스인 이산화탄소를 대규모로 해양지중에 저장하기 위하여 이산화탄소를 발생지(포집지)로부터 저장지까지 파이프라인을 이용하여 이송하는 이산화탄소 혼합물 수송공정을 모의실험하기 위한 장치로서, 특히 수직 U-관 및 수평 관을 이용하여 이산화탄소 해양지중저장 파이프라인 수송공정에 곡관이 미치는 영향을 파악하기 위한 모의실험 장치를 제공한다. 본 발명에 따르면, 이산화탄소 수송공정의 관련 데이터를 축적하고, 이를 기반으로 공정의 안정성을 해석하여 고효율을 확보할 수 있으며, 특히 대기 온도, 풍속, 해수 온도, 해수 유속, 실제로 파이프라인이 매설되는 지형의 표고차, 파이프라인의 연결 시 생성되는 곡관부의 영향과 파이프라인이 매설된 토양의 열전달 특성 및 계절의 변화 등에 따른 외부 환경조건의 변화를 실험적으로 모사함으로써 이산화탄소의 장거리 이송 시 압력강하 및 열전달 특성이 외부 변화에 따라 어떤 영향을 미치는지를 파악하고 이를 통해 외부환경의 변화에 따른 이송공정의 부정적 영향을 감소시킬 수 있다.