Abstract:
Optical stacks including a grating structure that generates diffraction in two in-plane dimensions. The optical stacks may include two gratings, which may be one-directional or two-directional. The optical stacks are suitable for reducing sparkle in displays.
Abstract:
Articles and methods of making and using the articles are provided. The articles include inorganic agglomerates having an average dimension in a range from about 50 microns to about 2 mm. The porous agglomerates each include a network of carbon or silica, and metal oxide particles embedded in the network. Some agglomerates are capable of lowering a resonant frequency of an acoustic device when the resonant frequency is in a range from about 50 Hz to about 1500 Hz.
Abstract:
An infrared light reflecting article is disclosed and includes a visible light transparent substrate including a polymer and an infrared light reflecting cholesteric liquid crystal layer disposed on the substrate. The substrate and infrared light reflecting cholesteric liquid crystal layer have a combined haze value of less than 3%.
Abstract:
Optical stacks including a grating structure that generates diffraction in two in-plane dimensions. The optical stacks may include two gratings, which may be one-directional or two-directional, or may include a single two-directional grating. The optical stacks include particles selected to give controlled diffusion of light. The optical stacks are suitable for reducing sparkle in displays.
Abstract:
A transparent electrode is described and includes metallic nanowires and a polymeric overcoat layer for protecting the nanowires from corrosion and abrasion. The polymeric overcoat layer includes nanoparticles selected from the group consisting of antimony tin oxide, zinc oxide and indium tin oxide, and has a sheet resistance of greater than about 107 ohm/sq. The transparent electrode can be used in electronic displays such as polymer- dispersed liquid crystal, liquid crystal, electrophoretic, electrochromic, thermochromic, electroluminescent and plasma displays.
Abstract:
Antireflective films are described having a surface layer comprising a the reaction product of a polymerizable low refractive index composition comprising at least one fluorinated free-radically polymerizable material and surface modified inorganic nanoparticles. A high refractive index layer is coupled to the low refractive index layer. In one emboidiment, the high refractive index layer comprises surface modified inorganic nanoparticles dispersed in a crosslinked organic material. The antireflective film is preferably durable, exhibiting a haze of less than 1.0% after 25 wipes with steel wool using a 3.2 cm mandrel and a mass of 1000 grams.
Abstract:
A multilayer optical adhesive including a first viscoelastic or elastomeric adhesive layer and a second viscoelastic or elastomeric adhesive layer. A crosslinked or soluble resin layer may be disposed between the first viscoelastic or elastomeric adhesive layer and the second viscoelastic or elastomeric adhesive layer or the first viscoelastic or elastomeric adhesive layer may be immediately adjacent to the second viscoelastic or elastomeric adhesive layer. An interface between immediately adjacent layers is structured and there is a difference in refractive indices across the interface.
Abstract:
A photoluminescent retroreflective article includes a retroreflective layer including multiple cube corner elements that collectively form a structured surface that is opposite a major surface and a conforming layer having a first region and a second region wherein the second region is in intimate contact with the structured surface and the first region forming a low refractive index layer between the conforming layer and the structured surface of the retroreflective layer. The conforming layer is separated from the structured surface at the first region by a barrier layer. A photoluminescent layer is disposed on the conforming layer.
Abstract:
An electronically switchable privacy films suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low absorption states upon application of an electric field across the transparent electrodes.
Abstract:
A multilayer optical adhesive including a first viscoelastic or elastomeric adhesive layer and a second viscoelastic or elastomeric adhesive layer. A crosslinked or soluble resin layer may be disposed between the first viscoelastic or elastomeric adhesive layer and the second viscoelastic or elastomeric adhesive layer or the first viscoelastic or elastomeric adhesive layer may be immediately adjacent to the second viscoelastic or elastomeric adhesive layer. An interface between immediately adjacent layers is structured and there is a difference in refractive indices across the interface.