Abstract:
A method of making a porous metal matrix composite is provided. The method includes mixing a metal powder, a plurality of inorganic particles, and a plurality of discontinuous fibers to form a mixture, wherein the metal powder comprises aluminum, magnesium, an aluminum alloy, or a magnesium alloy. The method further includes sintering the mixture to form the porous metal matrix composite. Typically, the inorganic particles comprise porous particles or ceramic bubbles or glass bubbles, and the inorganic particles and the discontinuous fibers are dispersed in the metal. The metal matrix composite has a lower density than the metal and an acceptable yield strength.
Abstract:
Method of making a polymer matrix composite comprising a porous polymeric network structure; and a plurality of particles distributed within the polymeric network structure, the method comprising: combining a thermoplastic polymer, a solvent that the thermoplastic polymer is soluble in, and a plurality of particles to provide a slurry; forming the slurry in to an article; heating the article in an environment to retain at least 90 percent by weight of the solvent, based on the weight of the solvent in the slurry, and inducing phase separation of the thermoplastic polymer from the solvent to provide the polymer matrix composite.
Abstract:
Articles and methods of making and using the articles are provided. The articles include inorganic agglomerates having an average dimension in a range from about 50 microns to about 2 mm. The porous agglomerates each include a network of carbon or silica, and metal oxide particles embedded in the network. Some agglomerates are capable of lowering a resonant frequency of an acoustic device when the resonant frequency is in a range from about 50 Hz to about 1500 Hz.
Abstract:
A metal matrix composite is provided, including a metal, inorganic particles, and discontinuous fibers. The inorganic particles and the discontinuous fibers are dispersed in the metal. The metal includes aluminum, magnesium, or alloys thereof. The inorganic particles have an envelope density that is at least 30% less than a density of the metal. The metal matrix composite has a lower envelope density than the matrix metal while retaining a substantial amount of the mechanical properties of the metal.
Abstract:
The present disclosure provides a polymer bond abrasive article formed of a continuous photocured polymer matrix having abrasive particles retained therein. The photocured polymer matrix includes at least one of an optical brightener or a light absorber, and the polymer bond abrasive article has a three-dimensional shape. An abrasive tool is also provided, including the abrasive article affixed to a shaft or a pad. Further, a method of making the polymer bond abrasive article is provided, including a) obtaining a photocurable composition liquid dispersion; b) selectively curing a portion of the photocurable composition; and repeating steps a) and b) to form the polymer bond abrasive article. The dispersion contains at least one photocurable component; abrasive particles; a photoinitiator; and at least one of an optical brightener or a light absorber.
Abstract:
Acoustically active articles having a composition including a nano-structured metal oxide are provided. The nano-structured metal oxide has the formula M1xM2yOz, where M1 is selected from the group consisting of alkali metals, alkaline earth metals, and combinations thereof, M2 is a transition metal or post-transition metal, and M2 has an atomic number no greater than 78. The articles can lower a resonant frequency of a cavity by no less than 50 Hz when the cavity is filled with the article and the resonant frequency is in a range from about 50 Hz to about 1500 Hz.
Abstract:
A polymer matrix composite includes a porous polymeric network structure; and a plurality of acoustically active particles distributed within the polymeric network structure. The weight fraction of acoustically active particles is between 0.80 and 0.99, based on the total weight of the polymer matrix composite. The polymer matrix composite has an air flow resistance of less than 100 seconds / 50 mL / 500 µm.
Abstract:
Ceramic comprising at least one polycrystalline metal oxide and amorphous phase, wherein the metal oxide comprises crystals with grain boundaries and triple points, wherein the amorphous phase is present at the grain boundaries and triple points. Exemplary articles made by a method described herein include electronics enclosure (e.g., a watch case, cellular phone case, or a tablet case).
Abstract:
A metal matrix composite is provided, including a metal, inorganic particles, and discontinuous fibers. The inorganic particles and the discontinuous fibers are dispersed in the metal. The metal includes aluminum, magnesium, or alloys thereof. The inorganic particles have an envelope density that is at least 30% less than a density of the metal. The metal matrix composite has a lower envelope density than the matrix metal while retaining a substantial amount of the mechanical properties of the metal.