Abstract:
A selective microbial detection device and methods of use are provided. The device includes a water-proof pouch that includes a first wall portion, a second wall portion, and a porous membrane filter disposed in the pouch between the first and second wall portions. The filter membrane divides the pouch into first and second compartments. The microbial detection device also includes an effective amount of a dry nutrient disposed in the first compartment, which contains sodium lauryl sulfate in an amount of 1.75 milligrams or greater per twelve square inches of the first wall portion. A dry, cold water-soluble gelling agent is adhered to the pouch in the first compartment and an absorbent pad is disposed in the second compartment. A sealable sample port provides access to deposit a liquid into the first compartment.
Abstract:
A culture system for culturing a microaerophilic or an anaerobic microorganism is provided. The culture system can include effective amounts of i) an enzyme of an oxidoreductase family and ii) a substrate for said enzyme, a container, and a predetermined volume of aqueous medium that supports growth of said anaerobic or microaerophilic microorganism. The enzyme can be selected from a group consisting of ascorbic acid oxidase and laccase. The effective amounts are effective to deplete dissolved oxygen in the predetermined volume to a concentration that facilitates growth of a microaerophilic microorganism or an obligately-anaerobic microorganism. A method of using the system is also provided.
Abstract:
In one aspect, the present disclosure provides a device. The device includes a body comprising a waterproof base, a waterproof coversheet attached to the base, and a channel disposed between the base and the coversheet. The channel has a perimeter and an opening that provides liquid access to the channel. A portion of the perimeter is defined by a waterproof seal. A dry first oxygen-scavenging reagent and an indicator reagent for detecting sulfate reduction by a sulfate-reducing bacterium are disposed in the device between the base and the coversheet. The waterproof base comprises a plurality of open microcompartment structures facing the coversheet.
Abstract:
The present disclosure provides a culture device for enumerating colonies of microorganisms. The device can comprise a base, a coversheet, and a nonporous spacer member disposed therebetween. The spacer member comprises an aperture that defines a growth compartment. At least one adhesive layer adhered to the base or the coversheet in the growth compartment. A cold water-soluble gelling agent and a dry oxygen-scavenging reagent are adhered to the at least one adhesive layer. The oxygen-scavenging reagent consists essentially of particles having a diameter of less than 106 microns.
Abstract:
The present disclosure provides a culture device for enumerating colonies of microorganisms. The device can comprise a base, a coversheet, and a nonporous spacer member disposed therebetween. The spacer member comprises an aperture that defines a growth compartment. At least one adhesive layer is adhered to the base or the coversheet in the growth compartment. A cold water-soluble gelling agent and an effective amount of a dry carbon dioxide-generating reagent are adhered to the at least one adhesive layer. The carbon dioxide-generating reagent consists essentially of particles having a diameter of less than 106 microns.
Abstract:
The present disclosure provides a culture device for enumerating colonies of microorganisms. The device can comprise a base, a coversheet, and a nonporous spacer member disposed therebetween. The spacer member comprises an aperture that defines a growth compartment. Disposed in the growth compartment are a cold water-soluble gelling agent, a dry oxygen-scavenging reagent, a dry buffer system, and an effective amount of a dry carbon dioxide-generating reagent. The buffer system is selected such that, when the growth compartment is hydrated with a predetermined volume of deionized water, an aqueous mixture with a pH less than or equal to 6.35 is formed.
Abstract:
A culture device comprising an oxygen sensitive luminophore, typically an oxygen sensitive phosphor, such as a porphyrin, and methods of use for culturing and enumerating microorganisms.
Abstract:
The present disclosure provides a culture device for enumerating colonies of sulfate-reducing microorganisms. The device includes a body having a waterproof base, a waterproof coversheet attached to the base, and a growth compartment disposed therebetween. The growth compartment has a perimeter and an opening. A portion of the perimeter is defined by a waterproof seal. The portion can include >50% of the perimeter. Disposed in the growth compartment are a dry cold water-soluble gelling agent, a dry culture medium selected to facilitate growth of a sulfate-reducing bacterium or indicator reagent for detecting hydrogen sulfide production by a sulfate-reducing bacterium, and a dry first oxygen-scavenging reagent.
Abstract:
A composition is provided for detecting a Salmonella microorganism in sample. The composition comprises at least one first selective agent that inhibits the growth of Gram-positive microorganisms, a first differential indicator system comprising at least one first differential indicator compound that is converted to a first detectable product by a Salmonella microorganism, and a second differential indicator system comprising a second differential indicator compound that is converted by urease enzyme activity to a second detectable product. Optionally, the composition may comprise a third differential indicator system comprising a third differential indicator compound that is converted by a β -galactosidase enzyme activity to a third detectable product. Methods of using the composition to detect a Salmonella microorganism are also provided.
Abstract:
A method of detecting a Salmonella microorganism is provided. The method includes the use of a selective growth medium, a first indicator system that is converted to a first detectable product by a Salmonella microorganism, and a second indicator system that is converted to a second detectable product by β-galactosidase enzyme activity. The method further comprises inoculating the growth medium and incubating the inoculated growth medium at a temperature higher than 40 degrees C.