Abstract:
The copolymer includes divalent units represented by formula —[CF2-CF2]—, divalent units represented by formula: (I), and one or more divalent units independently represented by formula: (II) When Z is hydrogen, the copolymer has an alpha transition temperature of up to 100 ?C. The copolymer has an —SO3Z equivalent weight in a range from 300 to 1400, and a variation of the copolymer in which —SO3Z is replaced with —SO2F has a melt flow index of up to 80 grams per ten minutes measured at a temperature of 265° C. and at a support weight of 5 kg. A catalyst ink or polymer electrolyte membrane including the copolymer are also provided.
Abstract:
The copolymer includes divalent units represented by formula —[CF2—CF2]—, divalent units represented by formula: (I), and one or more divalent units independently represented by formula: (II) When Z is hydrogen, the copolymer has an alpha transition temperature of up to 100 ?C. The copolymer has an —SO3Z equivalent weight in a range from 300 to 1400, and a variation of the copolymer in which —SO3Z is replaced with —SO2F has a melt flow index of up to 80 grams per ten minutes measured at a temperature of 265° C. and at a support weight of 5 kg. A catalyst ink or polymer electrolyte membrane including the copolymer are also provided.
Abstract:
Described herein is a process for the reduction of carbon dioxide comprising: providing an electrochemical device comprising an anode, a cathode, and a polymeric anion exchange membrane therebetween, wherein the polymeric anion exchange membrane comprises an anion exchange polymer, wherein the anion exchange polymer comprises at least one positively charged group selected from a guanidinium, a guanidinium derivative, an N-alkyl conjugated heterocyclic cation, or combinations thereof; introducing a composition comprising carbon dioxide to the cathode; and applying electrical energy to the electrochemical device to effect electrochemical reduction of the carbon dioxide.
Abstract:
An automated roll to roll method of making a fuel cell roll good subassembly is described wherein an elongated first subgasket web having a plurality of apertures is moved relative to a plurality of individual electrolyte membranes, each individual electrolyte membrane having a center region. The individual electrolyte membranes are aligned with the first subgasket web so that a center region of each electrolyte membrane is aligned with an aperture of the first subgasket web and the individual electrolyte membranes are attached to the first subgasket web.
Abstract:
A fuel cell membrane electrode assembly is provided comprising a polymer electrolyte membrane comprising a first polymer electrolyte and at least one manganese compound; and one or more electrode layers comprising a catalyst and at least one cerium compound. The membrane electrode assembly demonstrates an unexpected combination of durability and performance.
Abstract:
A process for preparing multi-layer proton exchange membranes (“PEM's”), and membrane electrode assemblies (“MEA's”) that include the PEM. The process includes (a) providing an article that includes an ionomer membrane adhered to a substrate, the membrane having a surface available for coating; (b) applying a dispersion or solution (e.g., an ionomer dispersion or solution) to the membrane surface; (c) drying the dispersion or solution to form a multi-layer PEM adhered to the substrate; and (d) removing the multi-layer PEM from the substrate. Also featured a multi-layer PEM's and MEA's incorporating such PEM's.
Abstract:
A fuel cell membrane electrode assembly is provided comprising a polymer electrolyte membrane comprising a first polymer electrolyte and at least one manganese compound; and one or more electrode layers comprising a catalyst and at least one cerium compound. The membrane electrode assembly demonstrates an unexpected combination of durability and performance.
Abstract:
The copolymer includes divalent units represented by formula —[CF2—CF2]—, divalent units represented by formula; and one or more divalent units independently represented by formula: The copolymer has an —SO2X equivalent weight in a range from 300 to 2000. A polymer electrolyte membrane that includes the copolymer and a membrane electrode assembly that includes such a polymer electrolyte membrane are also provided.
Abstract:
A fuel cell electrode layer may include a catalyst, an electronic conductor, and an ionic conductor. Within the electrode layer are a plurality of electronic conductor rich networks and a plurality of ionic conductor rich networks that are interspersed with the electronic conductor rich networks. A volume ratio of the ionic conductor to the electronic conductor is greater in the ionic conductor rich networks than in the electronic conductor rich networks. During operation of a fuel cell that includes the electrode layer, conduction of electrons occurs predominantly within the electronic conductor rich networks and conduction of ions occurs predominantly within the ionic conductor rich networks.
Abstract:
A fuel cell membrane electrode assembly is provided comprising a polymer electrolyte membrane which comprises a polymer that comprises bound anionic functional groups, wherein the polymer electrolyte membrane additionally comprises cerium cations. In another aspect, a fuel cell membrane electrode assembly is provided comprising a polymer electrolyte membrane which comprises a polymer that comprises bound anionic functional groups, wherein at least a portion of the anionic functional groups are in acid form and at least a portion of the anionic functional groups are neutralized by cerium cations. In another aspect, a polymer electrolyte membrane is provided which comprises a polymer that comprises bound anionic functional groups, wherein the polymer electrolyte membrane additionally comprises cerium cations, and wherein the amount of cerium cations present is between 0.001 and 0.5 charge equivalents based on the molar amount of acid functional groups present in the polymer electrolyte, more typically between 0.005 and 0.2, more typically between 0.01 and 0.1, and more typically between 0.02 and 0.05.