Abstract:
A radiation curable composition including at least one radiation hardenable component, a photo-initiator, and a filler material having a population of particulates in an amount greater than or equal to 50% by weight of the printable composition. The population of particulates exhibits a median diameter (D50) of greater than or equal to 0.3 micrometer on a volume-average basis as determined using the Particle Size Test Method, and the radiation curable composition exhibits a viscosity of less than or equal to 150 Pa s when measured using the Viscosity Test Method. A method, apparatus, and systems for producing composite articles by selectively exposing a portion of the radiation curable composition to a source of actinic radiation to at least partially cure the exposed portion of the radiation curable composition, thereby forming a hardened layer, preferably by an additive manufacturing process such as stereophotolithography, are also described. The composite articles may include composite dental restorations.
Abstract:
A curable composition that includes a urethane multifunctional (meth)acrylate, an inorganic filler having a primary particle dimension of at least 200 nm, a photoinitiator system that can be activated by electromagnetic radiation in the range of 340-550 nm, a reactive diluent, and a reinforcing silica having a primary particle dimension of 100 nm of less. The sum of the absolute value of the difference in the refractive index of the filler and the refractive index of the composition cured without filler plus the birefringence of the filler is 0.054 or less, i.e. 0.054≥|nfiller−nmatrix|+δfiller, where nfiller is the refractive index of the filler, nmatrix is the refractive index of the composition cured without filler, and δfiller is the birefringence of the filler.
Abstract:
A curable composition that includes a urethane multifunctional (meth)acrylate, an inorganic filler having a primary particle dimension of at least 200 nm, a photoinitiator system that can be activated by electromagnetic radiation in the range of 340-550 nm, a reactive diluent, and a reinforcing silica having a primary particle dimension of 100 nm of less. The sum of the absolute value of the difference in the refractive index of the filler and the refractive index of the composition cured without filler plus the birefringence of the filler is 0.054 or less, i.e. 0.054≥|nfiller−nmatrix|+δfiller, where nfiller is the refractive index of the filler, nmatrix is the refractive index of the composition cured without filler, and δfiller is the birefringence of the filler.
Abstract:
The invention relates to a curable composition for dental use comprising polyoxymetalates and/or derivatives thereof in an amount of at least about 5 wt.-% with respect to the weight of the composition.
Abstract:
Dental compositions are described comprising an addition-fragmentation agent of the formula: wherein R1, R2 and R3 are each independently Zm-Q-, a (hetero)alkyl group or a (hetero)aryl group with the proviso that at least one of R1, R2 and R3 is Zm-Q-; Q is a linking group have a valence of m+1; Z is an ethylenically unsaturated polymerizable group; m is 1 to 6; each X1 is independently —O— or —NR4—, where R4 is H or C1-C4 alkyl; and n is 0 or 1. Also described are dental articles prepared from a dental composition comprising an addition-fragmentation agent and methods of treating a tooth surface.
Abstract:
Dental compositions and methods of formulating a dental composition are described. In one embodiment, the dental composition comprises a polymerizable resin comprising one or more ethylenically unsaturated monomers or oligomers and nanoparticles. The nanoparticles have a refractive index of at least 1.600 and an average discrete or aggregate particle size of no greater than 100 nm. The dental composition further comprises inorganic metal oxide filler having a discrete or aggregate average particle size of at least 200 nm. The nanoparticles are present at a concentration to provide a refractive index differential between the cured polymerizable resin and inorganic metal oxide filler such that the contrast ratio of the dental composition is at least 40.
Abstract:
Dental compositions and methods of formulating a dental composition are described. In one embodiment, the dental composition comprises a polymerizable resin comprising one or more ethylenically unsaturated monomers or oligomers and nanoparticles. The nanoparticles have a refractive index of at least 1.600 and an average discrete or aggregate particle size of no greater than 100 nm. The dental composition further comprises inorganic metal oxide filler having a discrete or aggregate average particle size of at least 200 nm. The nanoparticles are present at a concentration to provide a refractive index differential between the cured polymerizable resin and inorganic metal oxide filler such that the contrast ratio of the dental composition is at least 40.
Abstract:
Dental compositions and methods of formulating a dental composition are described. In one embodiment, the dental composition comprises a polymerizable resin comprising one or more ethylenically unsaturated monomers or oligomers and nano-particles. The nanoparticles have a refractive index of at least 1.600 and an average discrete or aggregate particle size of no greater than 100 nm. The dental composition further comprises inorganic metal oxide filler having a discrete or aggregate average particle size of at least 200 nm. The nanoparticles are present at a concentration to provide a refractive index differential between the cured polymerizable resin and inorganic metal oxide filler such that the contrast ratio of the dental composition is at least 40.
Abstract:
Dental compositions and methods of formulating a dental composition are described. In one embodiment, the dental composition comprises a polymerizable resin comprising one or more ethylenically unsaturated monomers or oligomers and nano-particles. The nanoparticles have a refractive index of at least 1.600 and an average discrete or aggregate particle size of no greater than 100 nm. The dental composition further comprises inorganic metal oxide filler having a discrete or aggregate average particle size of at least 200 nm. The nanoparticles are present at a concentration to provide a refractive index differential between the cured polymerizable resin and inorganic metal oxide filler such that the contrast ratio of the dental composition is at least 40.
Abstract:
The invention relates to a curable composition for dental use comprising polyoxymetalates and/or derivatives thereof in an amount of at least about 5 wt.-% with respect to the weight of the composition.