Abstract:
A photoactive compound that is the Michael addition reaction product of an aziridine compound and a photoinitiator-functional (meth)acrylate is described. The compound can be used to crosslink (meth)acrylic polymers via a hydrogen abstracting or an alpha-cleavage mechanism.
Abstract:
Acene-thiophene copolymers with attached silylethynyl groups are provided that can be used in electronic devices. The copolymers are often soluble in common organic solvents and can be part of a coating composition.
Abstract:
Presently described are curable dental compositions comprising a polymerizable ionic liquid. The polymerizable ionic liquid comprises one or more ethylenically unsaturated (e.g. free-radically polymerizable) groups. Various embodiments of curable dental compositions are described. In some embodiments, the polymerizable ionic liquid is a monofunctional polymerizable ionic liquid comprising an ethylenically unsaturated group. In other embodiments, the polymerizable ionic liquid is a multifunctional polymerizable ionic liquid comprising at least two ethylenically unsaturated groups. The curable dental compositions describe herein can be utilized as dental primers, dental adhesives, dental sealants, and dental composites. In many embodiments, the curable dental compositions further comprise an initiator such as a photoinitiator.
Abstract:
Semiconductor devices, methods of making semiconductor devices, and coating compositions that can be used to provide a semiconductor layer within a semiconductor device are described. The coating compositions include a small molecule semiconductor, an insulating polymer, and an organic solvent that can dissolve both the small molecule semiconductor material and the insulating polymer. The small molecule semiconductor is an anthracene-based compound (i.e., anthracene derivative) substituted with two thiophene groups as well as with two silylethynyl groups.
Abstract:
A field effect transistor includes a thin layer of discontinuous conductive clusters between the gate dielectric and the active layer. The active layer can include an organic semiconductor or a blend of organic semiconductor and polymer. Metals, metal oxides, predominantly non-carbon metallic materials, and/or carbon nanotubes may be used to form the layer of conductive clusters. The conductive clusters improve transistor performance and also facilitate transistor fabrication.
Abstract:
Presently described are polymerizable ionic liquids comprising a cation and an aromatic carboxylate anion; wherein the cation, anion, or both comprise a free-radically polymerizable group. Also described are curable compositions comprising such polymerizable ionic liquids and at least one other free-radically polymerizable monomer, oligomer, or polymer.
Abstract:
The compositions comprise an acid functional monomer or acid-functional copolymer (or conjugate base thereof), and an imidazole compound (or conjugate acid theref).
Abstract:
Described is a pre-adhesive, curable composition comprising an acid-functional (meth)acrylate copolymer and a novel (meth)acryloyl-aziridine crosslinking agent, which when crosslinked provides a pressure-sensitive adhesive composition.
Abstract:
A pressure sensitive adhesive composition is described comprising a polyisobutylene polymer having a first functional group and an acrylic polymer having a second functional group present in the acrylic polymer backbone. The first and second functional groups form a hydrogen bond. In some embodiments, the adhesive composition further comprises a crosslinker that covalently crosslinks the second functional group(s) present in the polymer backbone of the acrylic polymer. Also described are adhesive articles, such as a tape, methods of adhesively bonding, and methods of making a pressure sensitive adhesive.