Abstract:
Der Hochspannungsisolator(1) weist ein erstes elektrisches Anschlussstück (2a) und ein zweites elektrisches Anschlussstück (2b) auf, zwischen welchen sich ein elektrischer Isolierkörper (3) erstreckt. Die Endabschnitte (4a, 4b) der Anschlusstücken (2a, 2b) sind mit dem Isolierkörper (3) verbunden, wobei zumindest an einem der Endabschnitte (4a, 4b) ein torusförmig ausgebildetes Feldsteuerelement (5) angeordnet ist. An dem das Feldsteuerelement (5) aufweisenden Endabschnitt (4a, 4b) ist ein sich in Umlaufrichtung des Endabschnittes (4a, 4b) erstreckenden Schlitz (6) eingebracht. Feldsteurelement (5, 5a) und der jeweilig zugehörige Endabschnitt (4a, 4b) sind einstückig ausgebildet. Mit dem Vorsehen des Schlitzes (6) werden bei Längs- und Querkontraktionen des Isolierkörpers (2) auftretende Zug- und Druckkräfte welche senkrecht zur Längsachse des Endabschnittes (4a, 4b) wirken, wie auch Scherkräfte weitgehend vermieden und eine gleichzeitige Beibehaltung einer hohen Vergleichmässigung im Bereich der Isolierstrecke bei im Betriebsfall auftretenden elektrischen Feldern erreicht.
Abstract:
A high-voltage switching device (1) comprising: • at least a fixed contact (4) and an associated movable contact (3) which can be actuated between a closed position in which it is electrically coupled to fixed contact, and an open position in which it is electrically se separated from the fixed contact; • an actuating mechanism comprising at least a rotating cam (101); • a mechanical transmission unit operatively associated to the actuating mechanism and movable between a first operative position and a second operative position for actuating the movable contact (3) between the open position and the closed position. The mechanical transmission unit comprises at least a first rotating pin (120) operatively associated to the rotating cam (101) in such a way that an outer edge (103) of the rotating cam (101) slides on the first rotating pin (120) causing a first movement of the mechanical transmission unit from the first operative position to the second operative position, during a first rotation of the cam (101).
Abstract:
Der Hochspannungsisolator enthält eine Metallarmatur (2), ein mit der Metallarmatur verfugtes Isolierrohr (1), welches an einem als Tragring (10) ausgebildeten Ende mit der Metallarmatur verklebt ist, und eine um die Achse (A) des Isolierrohrs geführte, axialsymmetrische Klebfuge. In die Metallarmatur ist eine um die Achse des Isolierrohrs geführte, ringförmige Nut (23) eingeformt, welche einen Endabschnitt des Tragrings aufnimmt. In die Nut (23) und in den Tragring (10) ist jeweils eine Dichtungsfläche (24, 13) eingeformt. Die beiden Dichtungsflächen sind derart angeordnet und ausgebildet, dass sie beim Verfugen von Isolierrohr (1) und Metallarmatur (2) unter Bildung einer Dichtung aufeinander gleiten und der als Verdrängungskörper wirkende Tragring (10) vor dem Verfugen in die Nut (23) eingebrachten Klebstoff (32) in die Klebfuge presst. Der Isolator und ein diesen Isolator enthaltendes Kühlelement sind einfach zu fertigen und zeichnen sich durch eine Leckrate von weniger als 10 -9 [bar l/s] aus sowie durch grosse Betriebssicherheit auch nach langjährigem Betrieb unter starker mechanischer, elektrischer, thermischer und chemischer Belastung.
Abstract:
An electric insulating compound conduit (10) for guiding a dielectric cooling fluid for cooling power electronics is provided. It includes a first electrically conductive pipe section (20) having a first pipe end (70) and defining an axis (5), a second electrically conductive pipe section (22) having a second pipe end (72), an electrically insulating conduit section (30), comprising a dielectric material and connecting the first pipe section (20) and the second pipe section (22), together forming a common fluid conduit space (32), wherein a first section (40) of the first pipe section (20) and a second section (42) of the second pipe section (22) are embedded in the insulating material of the insulating conduit section (30), and wherein, when the first pipe section (20) and the second pipe section (22) are on different electric potentials, a region of the highest field strength (11) between the first pipe section (20) and the second pipe section (22) is located inside the dielectric material of the electrically insulating conduit section (30), and is distanced from the fluid conduit space (32) by a distance being at least 5 percent of a minimum distance d between the pipe ends (70, 72). Further, an electric power module employing such a conduit is provided, and a method for producing the conduit (10).
Abstract:
An electric insulating compound conduit (10) for guiding a dielectric cooling fluid for cooling power electronics is provided. It includes a first electrically conductive pipe section (20) having a first pipe end (70) and defining an axis (5), a second electrically conductive pipe section (22) having a second pipe end (72), an electrically insulating conduit section (30), comprising a dielectric material and connecting the first pipe section (20) and the second pipe section (22), together forming a common fluid conduit space (32), wherein a first section (40) of the first pipe section (20) and a second section (42) of the second pipe section (22) are embedded in the insulating material of the insulating conduit section (30), and wherein, when the first pipe section (20) and the second pipe section (22) are on different electric potentials, a region of the highest field strength (11) between the first pipe section (20) and the second pipe section (22) is located inside the dielectric material of the electrically insulating conduit section (30), and is distanced from the fluid conduit space (32) by a distance being at least 5 percent of a minimum distance d between the pipe ends (70, 72). Further, an electric power module employing such a conduit is provided, and a method for producing the conduit (10).
Abstract:
Die Temperatur-Überwachungsvorrichtung für Hoch- und Mittelspannungsbauteile besitzt einen Wandler (1), mit welchem ein von der Temperatur des zu überwachenden Bauteils abhängiges mechanisches Signal erzeugt werden kann. Das mechanische Signal wird an ein elektrisch isolierendes Übertragungselement (3), z.B. in Form eines Stabs, übertragen, und von diesem auf einen Bewegungsaufnehmer (2). Das Übertragungselement (3) ist vorteilhaft in einem elektrisch isolierenden Hohlkörper (9) angeordnet. Durch diese Konstruktion kann der Bewegungsaufnehmer (2) gegen hohe Spannungen isoliert werden. Die Vorrichtung besteht aus robusten Komponenten und kann eine hohe Lebensdauer besitzen.
Abstract:
End portions of a stack (1) of stripes (6) with a thickness of between 0.1mm and 0.5mm consisting essentially of copper are bonded by punch-forming to form rigid contact blocks (4a) with top and bottom surfaces each covered by a silver coating (11) applied before the bonding to provide contact surfaces (12). At the punch-forming step congruent oblong bonding deformations (7) are produced in each stripe (6), each with a bottom portion which is displaced by a distance of at least the thickness of the stripe and usually between 0.5mm and 2mm with respect to the surrounding portion of the stripe (6). Each bonding deformation (7) is delimited by longitudinal boundaries where the stripe is disrupted and perpendicular boundaries where it is continuous.
Abstract:
The high-voltage insulator contains a metal armature (2), an insulating tube (1) which is joined to the metal armature and is adhesively bonded to the metal armature at an end in the form of a bearing ring (10), and an axially symmetrical adhesive-bonding joint which is guided around the axis (A) of the insulating tube. An annular groove (23) which is guided around the axis of the insulating tube and receives an end section of the bearing ring is formed in the metal armature. A respective sealing surface (24, 13) is formed in the groove (23) and in the bearing ring (10). The two sealing surfaces are arranged and formed in such a manner that they slide on one another when joining the insulating tube (1) and the metal armature (2) so as to form a seal, and the bearing ring (10) which acts as a displacement body presses adhesive (32), which has been introduced into the groove (23), into the adhesive-bonding joint before joining. The insulator and a cooling element containing this insulator are simple to produce and are distinguished by a leakage rate of less than 10 -9 [bar l/s] and by great operational reliability even after many years of operation with a large mechanical, electrical, thermal and chemical load.
Abstract:
The temperature monitoring device for high-voltage and medium-voltage components has a transducer (1), with which a mechanical signal that depends on the temperature of the component to be monitored can be generated. The mechanical signal is transmitted to an electrically insulated transmission element (3), for example, in the form of a rod, and therefrom to a movement pickup (2). The transmission element (3) is advantageously disposed in an electrically insulating hollow body (9). The movement pickup (2) may be insulated from high voltages by said design. The device comprises robust components and can have a long service life.
Abstract:
The high-voltage isolator (1) has a first electrical connecting element (2a) and a second electrical connecting element (2b) and an electrical insulating element (3) extends therebetween. The end sections (4a, 4b) of the connecting elements (2a, 2b) are connected to the isolating element (3), wherein at least on one of the end sections (4a, 4b) there is a torus-shaped field control element (5). At the end section (4a, 4b) featuring the field control element (5) there is a slot (6) extending in the perimeter direction of the end section (4a, 4b). The field control element (5, 5a) and the associated end section (4a, 4b) are designed as a single piece. Due to the provision of the slot (6), during longitudinal- and transverse contractions of the insulating element (2), any occurring tensile- and compression forces which act perpendicular to the longitudinal axis of the end section (4a, 4b), and also shear forces are generally prevented and a simultaneous retention of a good equalization in the region of the isolating path is achieved in the case of electrical fields occurring during operation.