Abstract:
The invention provides methods of crystallizing antibodies and fragments thereof as well as crystals produced thereby. More particularly, the invention provides methods of crystallizing human and non-human Fab fragments of antibodies, either alone or as co-crystals with their target ligand. For example, a crystal comprising a murine Fab fragment of the antibody 125-2H or a human Fab fragment of the antibody ABT-325, which bind to IL-18, are provided as well as a co-crystal of a murine Fab fragment bound to IL-18. ABT-325 and 125-2H differ significantly in combining site character and architecture, thus explaining their ability to bind IL-18 simultaneously at distinct epitopes.
Abstract:
The invention relates to batch crystallization methods for crystallizing an anti-hIL-12 antibody that allows the production of the antibody on an industrial scale, antibody crystals obtained according to the methods, compositions containing the crystals, and methods of using the crystals and the compositions.
Abstract:
The present invention relates to a batch crystallization method for crystallizing anti-human TNFalpha (hTNFalpha) antibody and antibody fragments which allows the production of said antibody on an industrial scale; a method of controlling the size of antibody crystals, for example, crystals of anti-hTNFalpha antibody fragments, compositions containing said crystals as well as methods of use of said crystals and compositions.
Abstract:
Novel compounds of Formula (I) or pharmaceutically acceptable salts, prodrugs and biologically active metabolites thereof of Formula (I) wherein the substituents are as defined herein, which are useful as therapeutic agents.
Abstract:
The invention provides methods of crystallizing antibodies and fragments thereof as well as crystals produced thereby. More particularly, the invention provides methods of crystallizing human and non-human Fab fragments of antibodies, either alone or as co-crystals with their target ligand. For example, a crystal comprising a murine Fab fragment of the antibody 125-2H or a human Fab fragment of the antibody ABT-325, which bind to IL-18, are provided as well as a co-crystal of a murine Fab fragment bound to IL-18. ABT-325 and 125-2H differ significantly in combining site character and architecture, thus explaining their ability to bind IL-18 simultaneously at distinct epitopes.
Abstract:
The present invention relates to a batch crystallization method for crystallizing anti-human TNFalpha (hTNFalpha) antibody and antibody fragments which allows the production of said antibody on an industrial scale; a method of controlling the size of antibody crystals, for example, crystals of anti-hTNFalpha antibody fragments, compositions containing said crystals as well as methods of use of said crystals and compositions.
Abstract:
The invention relates to batch crystallization methods for crystallizing an anti-hIL-12 antibody that allows the production of the antibody on an industrial scale, antibody crystals obtained according to the methods, compositions containing the crystals, and methods of using the crystals and the compositions.
Abstract:
The present invention is directed to novel compounds of formula (I) wherein the variables are as defined herein. The compounds of formula (I) are useful as kinase inhibitors and as such would be useful in treating certain conditions and diseases, especially inflammatory conditions and diseases and proliferative disorders and conditions, for example, cancers.
Abstract:
Novel compounds of Formula (I) or pharmaceutically acceptable salts, prodrugs and biologically active metabolites thereof of Formula (I) wherein the substituents are as defined herein, which are useful as therapeutic agents.