Abstract:
Apparatus and methods are described for performing tear film structure measurement on a tear film of an eye of a subject. A broadband light source (100) is configured to generate broadband light. A spectrometer (250) is configured to measure a spectrum of light of the broadband light that is reflected from at least one spot on the tear film, the spot having a diameter of between 100 microns and 240 microns. A computer processor (28) is coupled to the spectrometer and configured to determine a characteristic of the tear film based upon the spectrum of light measured by the spectrometer. Other applications are also described.
Abstract:
Apparatus and methods are described for performing tear film structure measurement on a tear film of an eye of a subject. A broadband light source (100) is configured to generate broadband light. A spectrometer (250) is configured to measure a spectrum of light of the broadband light that is reflected from at least one spot on the tear film, the spot having a diameter of between 100 microns and 240 microns. A computer processor (28) is coupled to the spectrometer and configured to determine a characteristic of the tear film based upon the spectrum of light measured by the spectrometer. Other applications are also described.
Abstract:
In a system and method for performing tear film structure measurement and evaporation rate measurements a broadband light source illuminates the tear film and a spectrometer measures respective spectra of reflected light from at least one point of the tear film. A color camera obtains a large field of view image of the tear film so as to obtain color information for all points of the tear film imaged by the color camera and an autofocusing mechanism focusses the color camera and the spectrometer. A processing unit coupled to the camera and to the spectrometer calibrates the camera so that the color obtained by the camera at the at least one point measured by the spectrometer matches the color of the spectrometer at the same point, and determines from the color of each point of the calibrated camera the thickness of the lipids at the respective point.
Abstract:
In a system and method for performing tear film structure measurements a broadband light source illuminates the tear film on a cornea of the eye and a spectrometer measures respective spectra of reflected light from at least one point of the cornea. A color camera obtains a large field of view image of the cornea so as to obtain color information for all points of the tear film imaged by the color camera. A processing unit coupled to the camera and to the spectrometer is configured, using 3D electromagnetic simulation, to analyze the reflected light received by the spectrometer and the camera, by iteratively comparing the received reflected light to a simulated measurement until a best fit is obtained for corneal structure parameters
Abstract:
A system and method are described for performing tear film structure measurement. A broadband light source illuminates the tear film. A spectrometer measures respective spectra of reflected light from at least one point of the tear film. A color camera performs large field of view imaging of the tear film, so as to obtain color information for all points of the tear film imaged by the color camera. A processing unit calibrates the camera at the point measured by the spectrometer so that the color obtained by the camera at the point matches the color of the spectrometer at the same point. The processing unit determines, from the color of respective points of the calibrated camera, thicknesses of one or more layers of the tear film at the respective points. Other applications are also described.
Abstract:
Apparatus and methods are described for performing structure measurement on a tear film of an eye of a subject. At least a portion of a surface of the tear film is illuminated using a broadband light source. A spectrum of light of the broadband light that is reflected from at least one point of the tear film is measured, using a spectrometer. Color information for a plurality of points of the tear film is obtained, by imaging a field of view of the tear film using a color camera. Using a processing unit, data from the color camera and data from the spectrometer that are indicative of characteristics of the tear film are received, and based upon a combination of the data received from the color camera and the data received from the spectrometer, an output is generated that is indicative of a structure of the tear film.