Abstract:
An epitaxially grown channel layer is provided on a well structure after ion implantation steps and heat treatment steps are performed to establish a required dopant profile in the well structure. The channel layer may be undoped or slightly doped, as required, so that the finally obtained dopant concentration in the channel layer is significantly reduced compared to a conventional device to thereby provide a retrograde dopant profile in a channel region of a field effect transistor. Additionally, a barrier diffusion layer may be provided between the well structure and the channel layer to reduce up-diffusion during any heat treatments carried out after the formation of the channel layer. The final dopant profile in the channel region may be adjusted by the thickness of the channel layer, the thickness and the composition of the diffusion barrier layer and any additional implantation steps to introduce dopant atoms in the channel layer.
Abstract:
In a dual stress liner approach, an intermediate etch stop material (234) may be provided on the basis of a plasma-assisted oxidation process (250) rather than by deposition so the corresponding thickness (234T) of the etch stop material (234) may be reduced. Consequently, the resulting aspect ratio may be less pronounced compared to conventional strategies, thereby reducing deposition-related irregularities which may translate into a significant reduction of yield loss, in particular for highly scaled semiconductor devices (200).
Abstract:
By removing a portion of a halo region (206, 306) or by avoiding the formation of the halo region (206, 306) within the extension region (209A), which may be subsequently formed on the basis of a re-grown semiconductor material (218, 318), the threshold roll off behavior may be significantly improved, wherein an enhanced current drive capability may simultaneously be achieved.
Abstract:
By locally modifying the intrinsic stress of a dielectric layer laterally enclosing gate electrode structures of a transistor configuration formed in accordance with in-laid gate techniques, the charge carrier mobility of different transistor elements may individually be adjusted. In particular, in in-laid gate structure transistor architecture, NMOS transistors and PMOS transistors may receive a tensile and a compressive stress, respectively.
Abstract:
A layer stack (220) comprising at least three material layers (221, 222, and 223) is provided on a silicon-containing conductive region to form a silicide portion (208) on and in the silicon-containing conductive region, wherein the layer (221) next to the silicon provides the metal atoms for the silicide reaction, the intermediate layer (222) is a metal-nitrogen-compound formed by supplying a nitrogen containing as during deposition, and for formation of the top layer (223), supply for said gas is discontinued. The method may be carried out as an in situ method, thereby significantly improving throughput and deposition tool performance compared to typical prior art processes, in which at least two deposition chambers have to be used
Abstract:
By providing a test structure (100) including a plurality of test pads (104), the anisotropic behavior of stress and strain influenced electrical characteristics, such as the electron mobility, may be determined in a highly efficient manner. Moreover, the test pads (104) may enable the detection of stress and strain induced modifications with a spatial resolution in the order of magnitude of individual circuit elements.
Abstract:
By providing a self-biasing semiconductor switch, an SRAM cell (450) having a reduced number of individual active components may be realized. In particular embodiments, the self-biasing semiconductor device may be provided in the form of a double channel field effect transistor (400) that allows the formation of an SRAM cell (450) with less than six transistor elements and, in preferred embodiments, with as few as two individual transistor elements.
Abstract:
A method is disclosed in which differing metal layers are sequentially deposited on silicon-containing regions so that the type and thickness of the metal layers may be adapted to specific characteristics of the underlying silicon-containing regions. Subsequently, a heat treatment is performed to convert the metals into metal silicides so as to improve the electrical conductivity of the silicon-containing regions. In this way, silicide portions may be formed that are individually adapted to specific silicon-containing regions so that device performance of individual semiconductor elements or the overall performance of a plurality of semiconductor elements may be significantly improved. Moreover, a semiconductor device is disclosed comprising at least two silicon-containing regions having formed therein differing silicide portions, wherein at least one silicide portion comprises a noble metal.
Abstract:
In a method for fabricating a semiconductor device different types of a metal-semiconductor compound (241, 261) are formed on or in at least two different conductive semiconductor regions so that for each semiconductor region the metal-semiconductor compound region may be formed to obtain an optimum overall performance of the semiconductor device. On one of the two semiconductor regions, the metal-semiconductor compound is formed of at least two different metal layers (240, 260), whereas the metal-semiconductor compound in or on the other semiconductor region is formed from a single metal layer (240).
Abstract:
A method is disclosed which includes implanting an inert species in a layer of a gate electrode material (205A), the gate electrode material being formed above a substrate (201) and having a P-doped layer portion and an N-doped layer portion, forming a first gate electrode (205P) from the P-doped layer portion and a second gate electrode (205N) from the N-doped layer portion, performing a wet chemical cleaning process, and forming a first transistor (200B) on the basis of the first gate electrode (205P) and a second transistor (200A) on the basis of the second gate electrode (205N).