Abstract:
A reference circuit for overerase correction in a flash memory includes a reference flash memory cell biased in a substantially similar manner to that of an overerased flash memory cell. The leakage current for the reference flash memory cell is preset to a tolerable level of leakage current for a maximum operating temperature of the flash memory and the reference flash memory cell tracks the temperature characteristics of the overerased flash memory cell, to avoid costly overcorrection at high temperatures.
Abstract:
A non-volatile memory that allows simultaneous reading and writing operations by time multiplexing a single x-decode path between read and write operations. This is accomplished using appropriate timing signals ot store/latch a first word line for a first operation and then relinquishing the x-decode path so that a second operation can load an address and access a second word line.
Abstract:
A flash memory device is divided into two or more banks. Each bank includes a number of sectors. Each sector includes flash memory cells. Each bank has a decoder that selectively receives an address from an input address buffer or from an internal address sequencer controlled by an internal state machine. The output data for each bank can be communicated to a read sense amplifier or a verify sense amplifier. The read sense amplifier connects to the output buffer while the verify sense amplifier connects to the state machine. When one bank receives a write command, the internal state machine takes control and starts the program or erase operation. While one bank is busy with a program or erase operation, the other bank can be accessed for a read operation.
Abstract:
A low supply voltage negative charge pump for generating a relatively high negative voltage to control gates of selected memory cells via wordlines in an array of flash EEPROM memory cells during flash erasure includes charge pump means (210) formed of a plurality of charge pump stages (201-206) and coupling capacitor means (C201-C212) for delivering clock signals to the plurality of charge pump stages. Each of the plurality of charge pump stages is formed of an N-channel intrinsic pass transistor (N1-N6), an N-channel intrinsic initialization transistor (MD1-MD6), and an N-channel intrinsic precharge transistor (MX3-MX7, MX1) which are disposed in separate p-wells so as to reduce body effect. As a result, the negative charge pump is operable using a supply voltage of +3 volts or lower.
Abstract:
A flash memory device is divided into two or more banks. Each bank includes a number of sectors. Each sector includes flash memory cells. Each bank has a decoder that selectively receives an address from an input address buffer or from an internal address sequencer controlled by an internal state machine. The output data for each bank can be communicated to a read sense amplifier or a verify sense amplifier. The read sense amplifier connects to the output buffer while the verify sense amplifier connects to the state machine. When one bank receives a write command, the internal state machine takes control and starts the program or erase operation. While one bank is busy with a program or erase operation, the other bank can be accessed for a read operation.
Abstract:
A low supply voltage negative charge pump for generating a relatively high negative voltage to control gates of selected memory cells via wordlines in an array of flash EEPROM memory cells during flash erasure includes charge pump means (210) formed of a plurality of charge pump stages (201-206) and coupling capacitor means (C201-C212) for delivering clock signals to the plurality of charge pump stages. Each of the plurality of charge pump stages is formed of an N-channel intrinsic pass transistor (N1-N6), an N-channel intrinsic initialization transistor (MD1-MD6), and an N-channel intrinsic precharge transistor (MX3-MX7, MX1) which are disposed in separate p-wells so as to reduce body effect. As a result, the negative charge pump is operable using a supply voltage of +3 volts or lower.
Abstract:
A flash memory device is divided into two or more banks. Each bank includes a number of sectors. Each sector includes flash memory cells. Each bank has a decoder that selectively receives an address from an input address buffer or from an internal address sequencer controlled by an internal state machine. The output data for each bank can be communicated to a read sense amplifier or a verify sense amplifier. The read sense amplifier connects to the output buffer while the verify sense amplifier connects to the state machine. When one bank receives a write command, the internal state machine takes control and starts the program or erase operation. While one bank is busy with a program or erase operation, the other bank can be accessed for a read operation.
Abstract:
A low supply voltage negative charge pump for generating a relatively high negative voltage to control gates of selected memory cells via wordlines in an array of flash EEPROM memory cells during flash erasure includes charge pump means (210) formed of a plurality of charge pump stages (201-206) and coupling capacitor means (C201-C212) for delivering clock signals to the plurality of charge pump stages. Each of the plurality of charge pump stages is formed of an N-channel intrinsic pass transistor (N1-N6), an N-channel intrinsic initialization transistor (MD1-MD6), and an N-channel intrinsic precharge transistor (MX3-MX7, MX1) which are disposed in separate p-wells so as to reduce body effect. As a result, the negative charge pump is operable using a supply voltage of +3 volts or lower.
Abstract:
A non-volatile memory that allows simultaneous reading and writing operations by time multiplexing a single x-decode path between read and write operations. This is accomplished using appropriate timing signals ot store/latch a first word line for a first operation and then relinquishing the x-decode path so that a second operation can load an address and access a second word line.
Abstract:
A non-volatile memory that allows simultaneous reading and writing operations by time multiplexing a single x-decode path between read and write operations. This is accomplished using appropriate timing signals ot store/latch a first word line for a first operation and then relinquishing the x-decode path so that a second operation can load an address and access a second word line.