Abstract:
Delay times are modified in an Ethernet network device having captured the media channel by increasing the interframe spacing (IFS) between data packets. The modified IFS interval, increased by adding a delay interval to the minimum interpacket gap (IPG) interval after a predetermined number of consecutive successful transmissions, enables other network stations to transmit data during the deferral interval. The Ethernet network device maintains the modified IFS for a limited deferral interval, based upon a predetermined time interval or a number of successful transmissions by other network stations. Additional delay intervals may be added if the network station continues to exceed the predetermined number of consecutive successful transmissions. Hence, a network station can avoid capturing a network channel while ensuring access latencies.
Abstract:
Delay times are modified in Ethernet network devices by adding an integer multiple of a delay interval to the minimum interpacket gap (IPG) interval, and decrementing the integer in each network station in response to detected activity on the media. Each station has a unique integer value from the range of zero to the number of stations (N) minus one. The unique integer value ensures that each station has a different delay interval in accessing the media after sensing deassertion of the receive carrier. The station having a zero integer value will have its integer counter reset to (N-1) after a station transmits a data packet on the network, and the stations having nonzero integer values decrement their respective integer counters. Each network station also includes a deferral timer that counts the maximum delay interval of (N-1) delay intervals plus the minimum IPG value, and thus establishes a bounded access latency for a half-duplex shared network.
Abstract:
Delay times are modified in Ethernet network devices by adding a randomized time interval generated in accordance with a propagation delay between two network stations. A server in a client-server arrangement is given priority access over clients by adding to the clients' InterPacket Gap (IPG) interval a random time delay between zero and a maximum value equal to no more than twice the cable delay between the server and the network hub. The server can access the network media after the IPG interval, whereas clients must wait the additional random time delay before accessing the media, thereby improving server throughput and overall network throughput. Collision mediation is improved by adding a randomly selected integer multiple of a propagation delay between two stations, where the integer multiplier is randomly selected from a predetermined range of integers. The randomly selected integer multiple of the propagation delay provides a second dimension of random selection to minimize subsequent collisions and minimize the occurrence of capture effects in losing stations.
Abstract:
Delay times are modified in an Ethernet network device having captured the media channel by increasing the interframe spacing (IFS) between data packets. The modified IFS interval, increased by adding a delay interval to the minimum interpacket gap (IPG) interval after a predetermined number of consecutive successful transmissions, enables other network stations to transmit data during the deferral interval. The Ethernet network device maintains the modified IFS for a limited deferral interval, based upon a predetermined time interval or a number of successful transmissions by other network stations. Additional delay intervals may be added if the network station continues to exceed the predetermined number of consecutive successful transmissions. Hence, a network station can avoid capturing a network channel while ensuring access latencies.
Abstract:
A network switch, configured for performing layer 2 and layer 3 switching in an Ethernet (IEEE 802.3) network without blocking of incoming data packets, includes a network switch port having a packet classifier module configured for evaluating an incoming data packet on an instantaneous basis. The packet classifier module is able to monitor data flows between two network nodes interacting according to a prescribed network application. The packet classifier module determines the application state for a prescribed network application from a received layer 2 data packet, enabling switching logic within the network switch to utilize application-specific aging intervals for respective network applications such as HTTP, SNMP, ftp, Telnet, etc. in order to delete aged address entries from a network switch address table based on the supported network application. Determination of the application state from the received layer 2 data packet also enables the network switch to detect the end of a data flow for deletion of the corresponding address entry from the network switch address table.
Abstract:
Delay times are modified in an Ethernet network device having captured the media channel by increasing the interframe spacing (IFS) between data packets. The modified IFS interval, increased by adding a delay interval to the minimum interpacket gap (IPG) interval after a predetermined number of consecutive successful transmissions, enables other network stations to transmit data during the deferral interval. The Ethernet network device maintains the modified IFS for a limited deferral interval, based upon a predetermined time interval or a number of successful transmissions by other network stations. Additional delay intervals may be added if the network station continues to exceed the predetermined number of consecutive successful transmissions. Hence, a network station can avoid capturing a network channel while ensuring access latencies.
Abstract:
Delay times are modified in Ethernet network devices by adding an integer multiple of a delay interval to the minimum interpacket gap (IPG) interval, and decrementing the integer in each network station in response to detected activity on the media. Each station has a unique integer value from the range of zero to the number of stations (N) minus one. The unique integer value ensures that each station has a different delay interval in accessing the media after sensing deassertion of the receive carrier. The station having a zero integer value will have its integer counter reset to (N-1) after a station transmits a data packet on the network, and the stations having nonzero integer values decrement their respective integer counters. Each network station also includes a deferral timer that counts the maximum delay interval of (N-1) delay intervals plus the minimum IPG value, and thus establishes a bounded access latency for a half-duplex shared network.
Abstract:
A network switch, configured for performing layer 2 and layer 3 switching in an Ethernet (IEEE 802.3) network without blocking of incoming data packets, includes a network switch port having a packet classifier module configured for evaluating an incoming data packet on an instantaneous basis. The packet classifier module is able to monitor data flows between two network nodes interacting according to a prescribed network application. The packet classifier module determines the application state for a prescribed network application from a received layer 2 data packet, enabling switching logic within the network switch to utilize application-specific aging intervals for respective network applications such as HTTP, SNMP, ftp, Telnet, etc. in order to delete aged address entries from a network switch address table based on the supported network application. Determination of the application state from the received layer 2 data packet also enables the network switch to detect the end of a data flow for deletion of the corresponding address entry from the network switch address table.
Abstract:
Delay times are modified in Ethernet network devices by adding an integer multiple of a delay interval to the minimum interpacket gap (IPG) interval, and decrementing the integer in each network station in response to detected activity on the media. Each station has a unique integer value from the range of zero to the number of stations (N) minus one. The unique integer value ensures that each station has a different delay interval in accessing the media after sensing deassertion of the receive carrier. The station having a zero integer value will have its integer counter reset to (N-1) after a station transmits a data packet on the network, and the stations having nonzero integer values decrement their respective integer counters. Each network station also includes a deferral timer that counts the maximum delay interval of (N-1) delay intervals plus the minimum IPG value, and thus establishes a bounded access latency for a half-duplex shared network.