Abstract:
An implant having an adhesive structure comprising a planar surface having two sides and rectangular cuboid-based protrusions having pyramidal tips extending from at least one of said sides, optionally having a porous basic supporting structure, and methods of making and using such implants.
Abstract:
According to one aspect of the invention, there is provided a method of forming a film with a lenticular lens array, the method comprising providing a substrate; providing a mold having a plurality of nano-scale to micro-scale cavities that form the lenticular lens array on the substrate; having the mold contact the substrate; and forming the lenticular lens array by allowing portions of the substrate to partially fill the plurality of cavities.
Abstract:
A surface on a polymeric film having an array of patterned structures, wherein the array of patterned structures influences fluid flow of the surface and causes reduced attachment of a biological material.
Abstract:
A surface on a polymeric film having an array of patterned structures, wherein the array of patterned structures influences fluid flow of the surface and causes reduced attachment of a biological material.
Abstract:
Synthetic polymer substrates comprising a hierarchical surface structure of multiple domes and multiple pillars on said domes, wherein said substrate is a synthetic polymer film, said domes have diameters in the range from about 5 μm to about 400 μm, heights in the range from about 2.5 μm and about 500 μm, and said pillars have diameters in the range from about 20 nm to about 5 μm and aspect ratios of from about 2 to about 50, and methods of making and using them.
Abstract:
There is provided a method for promoting stem cell chondrogenesis, comprising the step of culturing a population of stem cells on a plurality of imprints disposed on a substrate, the imprints being configured to selectively promote chondrogenesis of the stem cells.
Abstract:
According to one aspect of the invention, there is provided a method of forming a film with a lenticular lens array, the method comprising providing a substrate; providing a mold having a plurality of nano-scale to micro-scale cavities that form the lenticular lens array on the substrate; having the mold contact the substrate; and forming the lenticular lens array by allowing portions of the substrate to partially fill the plurality of cavities.
Abstract:
There is provided a process for making a patterned metal oxide structure comprising the step of heating an imprint structure comprising a polymerized organometallic compound to remove organic material and thereby form the patterned metal oxide structure, wherein the imprint structure is formed by polymerizing a resist mixture comprising at least one olefinic polymerizable compound and a polymerizable organometallic compound having, e.g., at least one carboxylate of Formula 1: wherein n is 1-12; and each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloakyl, cycloakenyl, aryl, and aralkyl.
Abstract:
A laminate and process of making the laminate is disclosed comprising: a surgical mesh having first and second surfaces; and an adhesive structure having adhesive and non-adhesive surfaces, wherein the non-adhesive surface of the adhesive structure is laminated to at least one of said first and second surfaces of said surgical mesh, and the adhesive surface of said adhesive structure has protrusions extending therefrom comprising a resin having a Young's modulus of greater than 17 MPa, which protrusions are of sufficiently low diameter to promote adhesion by increasing physical attractive forces between the adhesive structure and a target surface, as measured by shear adhesion.
Abstract:
According to one aspect of the invention, there is provided an optical grating comprising a substrate comprising a plurality of protrusions with a space in between any two adjacent protrusions; and a cap provided on at least one of the plurality of protrusions at an end that is furthest from the substrate, wherein the cap has a higher degree of optical attenuation compared to the substrate material and wherein the combination of each protrusion and the respective cap thereon has a generally symmetric cross-sectional profile.