Abstract:
There is provided a node for operating in a wireless network, including: coarse-granularity scanning circuitry that performs a coarse-granularity scanning process to detect one or more donor nodes of the wireless network according to a first metric. Connection circuitry forms a connection to a selected donor node in the one or more donor nodes. The connection is broken as a consequence of the coarse-granularity scanning process being performed. Fine granularity scanning circuitry performs a fine granularity scanning process to determine a configuration in which a quality of the connection is improved according to a second metric. The connection is maintained during the fine granularity scanning process.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. A wireless network controller provides a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the antenna array. The antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterise incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput.
Abstract:
An antenna apparatus operates as a base station in a wireless network, with a method configuring a transmission beam within such antenna apparatus. The antenna apparatus has a rotatable antenna assembly employing selected transmission beam patterns, and a controller to rotate the antenna assembly altering its azimuth direction. During configuration mode, a sweep operation rotates the antenna assembly to selected azimuth directions. Quality metric determination circuitry determines, for each selected azimuth direction, a link quality metric for wireless terminals based on communication between the wireless terminals and the base station whilst the rotatable antenna assembly is at that selected azimuth direction. Transmission beam determination circuitry determines, from the link quality metrics determined for the wireless terminals at each selected azimuth direction, both a transmission beam pattern and an azimuth direction for subsequent communication with the wireless terminals. The antenna apparatus efficiently self-configures its transmission beam pattern and azimuth direction.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. A wireless network controller provides a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the antenna array. The antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterise incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput.
Abstract:
An antenna apparatus operates as a base station in a wireless network with spatial nulling performed within such apparatus. The apparatus has an antenna assembly employing a selected reception beam pattern. During a nulling test, a reception beam pattern controller causes the assembly to employ each reception beam pattern. Quality metric determination circuitry determines for each reception beam pattern a link quality metric for each of several wireless terminals, based on communication between those wireless terminals and the base station while the assembly employs that reception beam pattern. Reception beam determination circuitry determines, from the various link quality metrics, a reception beam pattern from the reception beam patterns for use for subsequent communication with the wireless terminals. A reception beam pattern can be altered seeking to reduce interference source effects and to maintain an appropriate level of link quality regarding each wireless terminal communicating with the base station.
Abstract:
A feeder terminal comprises backhaul communication circuitry connecting a communications network via a wireless backhaul, and providing an access base station with wireless backhaul access. Backhaul information circuitry determines congestion information relating to the wireless backhaul and communication circuitry enables communication with an access base station and provides the congestion information to the access base station. In response to a demand message from the access base station comprising quality of service requirements, the communication circuitry forwards the demand message to the communications network. Additionally, an access base station comprises communication circuitry enabling communication with a feeder terminal. The communication circuitry provides a quality of service demand message to the feeder terminal based on a quality of service requirement and receives congestion information relating to the wireless backhaul from the feeder terminal. The access control circuitry controls usage of the wireless backhaul by user equipment in dependence on the congestion information.
Abstract:
There is provided a node for operating in a wireless network, including: coarse-granularity scanning circuitry that performs a coarse-granularity scanning process to detect one or more donor nodes of the wireless network according to a first metric. Connection circuitry forms a connection to a selected donor node in the one or more donor nodes. The connection is broken as a consequence of the coarse-granularity scanning process being performed. Fine granularity scanning circuitry performs a fine granularity scanning process to determine a configuration in which a quality of the connection is improved according to a second metric. The connection is maintained during the fine granularity scanning process.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. A wireless network controller provides a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the antenna array. The antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterize incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput.
Abstract:
There is provided a node for use in a network, the node comprising: communication circuitry to communicate with a management server. Bootstrap circuitry initially identifies an intermediate node from at least one available node in the network in response to the communication circuitry being unable to communicate with the management server directly. The communication circuitry is arranged to communicate with the management server indirectly via the intermediate node when unable to communicate with the management server directly. Role assignment circuitry assigns a role to be performed by the node in the network based on whether the communication circuitry communicates with the management server directly, or indirectly via an intermediate node.
Abstract:
An antenna apparatus operates as a base station in a wireless network, with a method configuring a transmission beam within such antenna apparatus. The antenna apparatus has a rotatable antenna assembly employing selected transmission beam patterns, and a controller to rotate the antenna assembly altering its azimuth direction. During configuration mode, a sweep operation rotates the antenna assembly to selected azimuth directions. Quality metric determination circuitry determines, for each selected azimuth direction, a link quality metric for wireless terminals based on communication between the wireless terminals and the base station whilst the rotatable antenna assembly is at that selected azimuth direction. Transmission beam determination circuitry determines, from the link quality metrics determined for the wireless terminals at each selected azimuth direction, both a transmission beam pattern and an azimuth direction for subsequent communication with the wireless terminals. The antenna apparatus efficiently self-configures its transmission beam pattern and azimuth direction.