Abstract:
An improved process for cleaning and disinfecting contact lenses with a single solution is described. The process utilizes the cleaning effect of a cleaning agent in combination with the solvent action of water and physical agitation of the lens (i.e., by means of rubbing) to achieve a degree of cleaning which is comparable to or better than prior processes which utilize surfactant-cleaners. The cleaning agent is selected from polycarboxylates, polysulfonates and polyphosphates. The preferred cleaning agent is citrate. The process also offers greater convenience, relative to many prior systems for cleaning and disinfecting contact lenses, since the need to utilize additional products to clean the lenses is eliminated.
Abstract:
Stable liquid enzyme compositions containing an ophthalmically acceptable enzyme and methods involving the combined use of these compositions with a polymeric antimicrobial agent are disclosed for the simultaneous cleaning and disinfecting of contact lens. Methods for a daily use regimen are also disclosed.
Abstract:
Stable liquid enzyme compositions containing an ophthalmically acceptable enzyme and methods involving the combined use of these compositions with a polymeric antimicrobial agent are disclosed for the simultaneous cleaning and disinfecting of contact lenses. Methods for a daily use regimen are also disclosed.
Abstract:
An improved process for cleaning and disinfecting contact lenses with a single solution is described. The process utilizes the cleaning effect of a cleaning agent in combination with the solvent action of water and physical agitation of the lens (i.e., by means of rubbing) to achieve a degree of cleaning which is comparable to or better than prior processes which utilize surfactant-cleaners. The cleaning agent is selected from polycarboxylates, polysulfonates and polyphosphates. The preferred cleaning agent is citrate. The process also offers greater convenience, relative to many prior systems for cleaning and disinfecting contact lenses, since the need to utilize additional products to clean the lenses is eliminated.
Abstract:
An improved process for cleaning and disinfecting contact lenses with a single solution is described. The process utilizes the cleaning effect of a cleaning agent in combination with the solvent action of water and physical agitation of the lens (i.e., by means of rubbing) to achieve a degree of cleaning which is comparable to or better than prior processes which utilize surfactant-cleaners. The cleaning agent is selected from polycarboxylates, polysulfonates and polyphosphates. The preferred cleaning agent is citrate. The process also offers greater convenience, relative to many prior systems for cleaning and disinfecting contact lenses, since the need to utilize additional products to clean the lenses is eliminated.