Abstract:
The present invention is a method and apparatus for providing an electrical substrate. The electrical substrate comprises a dielectric layer having a surface roughness of no greater than 6.0 microns. A first conductive layer is attached to the dielectric layer. In one embodiment, the dielectric layer comprises a laminate that comprises a cloth having a uniform weave and a resin that is consistently impregnated within the uniform weave. A removable layer may be attached to the laminate and removed prior to metallizing of the first conductive layer. Various embodiments are described.
Abstract:
The present invention is a method and apparatus for providing an electrical substrate. The electrical substrate comprises a dielectric layer having a surface roughness of no greater than 6.0 microns. A first conductive layer is attached to the dielectric layer. In one embodiment, the dielectric layer comprises a laminate that comprises a cloth having a uniform weave and a resin that is consistently impregnated within the uniform weave. A removable layer may be attached to the laminate and removed prior to metallizing of the first conductive layer. Various embodiments are described.
Abstract:
This invention concerns ultra-thin metal layer containing substrates useful for manufacturing high density circuits as well as novel methods for using the substrates to manufacture laminates, circuits, interposers, and other electronic laminates.
Abstract:
This invention concerns ultra-thin metal layer containing substrates useful for manufacturing high density circuits as well as novel methods for using t he substrates to manufacture laminates, circuits, interposers, and other electronic laminates.