Abstract:
A PoP (package-on-package) package includes a bottom package coupled to a top package. Terminals on the top of the bottom package are coupled to terminals on the bottom of the top package with an electrically insulating material located between the upper surface of the bottom package and the lower surface of the top package. The bottom package and the top package are coupled during a process that applies force to bring the packages together while heating the packages.
Abstract:
In some embodiments, a semiconductor device package assembly may include a substrate. The substrate (110) may include a first surface, a second surface substantially opposite of the first surface, and a first set of electrical conductors (140) coupled to the first surface. The first set of electrical conductors may function to electrically connect the substrate. The second surface may include a die (150) electrically coupled to the second surface. In some embodiments, the semiconductor device package may include an electrically insulating material (160) covering at least a portion of the second surface and the die. The electrically insulating material may include a dielectric polymer. The dielectric polymer may function to inhibit deformation of the package during use. The dielectric polymer may include a coefficient of thermal expansion of between about 5 to about 15 ppm/°C. The dielectric polymer may include a modulus of between about 15 to about 25 Gpa.
Abstract:
Semiconductor packaging substrates and processing sequences are described. In an embodiment, a packaging substrate includes a build-up structure, and a patterned metal contact layer partially embedded within the build-up structure and protruding from the build-up structure. The patterned metal contact layer may include an array of surface mount (SMT) metal bumps in a chip mount area, a metal dam structure or combination thereof.
Abstract:
Packages and methods of formation are described. In an embodiment, a system in package (SiP) includes first and second redistribution layers (RDLs), stacked die between the first and second RDLs, and conductive pillars extending between the RDLs. A molding compound may encapsulate the stacked die and conductive pillars between the first and second RDLs.
Abstract:
A PoP (package-on-package) package includes a bottom package with a substrate encapsulated in an encapsulant with a die coupled to the top of the substrate. At least a portion of the die is exposed above the encapsulant on the bottom package substrate. A top package includes a substrate with encapsulant on both the frontside and the backside of the substrate. The backside of the top package substrate is coupled to the topside of the bottom package substrate with at least part of the die being located in a recess in the encapsulant on the backside of the top package substrate.
Abstract:
A PoP (package-on-package) package includes a bottom package with a substrate encapsulated in an encapsulant with a die coupled to the top of the substrate. At least a portion of the die is exposed above the encapsulant on the bottom package substrate. A top package includes a substrate with encapsulant on both the frontside and the backside of the substrate. The backside of the top package substrate is coupled to the topside of the bottom package substrate with at least part of the die being located in a recess in the encapsulant on the backside of the top package substrate.
Abstract:
A PoP (package-on-package) package includes a bottom package with a substrate encapsulated in an encapsulant with a die coupled to the top of the substrate. At least a portion of the die is exposed above the encapsulant on the bottom package substrate. A top package includes a substrate with encapsulant on both the frontside and the backside of the substrate. The backside of the top package substrate is coupled to the topside of the bottom package substrate with at least part of the die being located in a recess in the encapsulant on the backside of the top package substrate.