Abstract:
An alternating current (AC) to direct current (DC) power converter may have a connector with a pair of power supply contacts and a pair of data contacts. An electronic device may be connected to the connector of the power converter. The power converter may supply DC power to the electronic device using the power supply contacts. The power converter may include control circuitry that has a resistor coupled across the data contacts. When the electronic device and the power converter are connected to each other, each may advertize to the other that capabilities are present that exceed industry standards. At the same time, standard-compliant discovery operations may be performed to probe the value of the resistance of the resistor that is coupled across the data contacts. When extended capabilities are discovered, extended functions may be performed including accelerated charging functions and data communications functions.
Abstract:
Electronic devices and equipment may communicate over a wired communications path. The wired communications path may include one or more wires and may be associated with a headphone cable. Data may be conveyed in the form of a digital data stream containing multiple traffic channels. The digital data stream may include superframes, each of which has multiple frames of data. The frames of data may each contain a number of data slots. Some of the slots in a superframe may be used exclusively by a particular one of the traffic channels. Boundary slots may be shared between traffic channels. Data interface circuitry may implement a data dispersion algorithm that determines the pattern in which data from each traffic channel is distributed within each boundary slot. Transmitting data interface circuitry may merge traffic channels into a single data stream. Receiving data interface circuitry may reconstruct the traffic channels.
Abstract:
Electronic devices and accessories are provided that may communicate over wired communications paths. The electronic devices may be portable electronic devices such as cellular telephones or media players and may have audio connectors such as 3.5 mm audio jacks. The accessories may be headsets or other equipment having mating 3.5 mm audio plugs and speakers for playing audio. Microphones may be included in an accessory to gather voice signals and noise cancellation signals. Analog-to-digital converter circuitry in the accessory may digitize the microphone signals. Digital voice signals and voice noise cancellation signals can be transmitted over the communications path and processed by audio digital signal processor circuitry in an electronic device. Digital-to- analog converter circuitry in the accessory may convert digital audio signals to analog speaker signals. Digital noise cancellation signals may use digital noise signals to cancel noise from digital audio signals that have been received from an electronic device.
Abstract:
An assembly for an electronic device (100), comprising a device housing (106) including an opening (108), a fingerprint sensor (102), plastic molded above the fingerprint sensor, the plastic defining a button structure (104) disposed to fit in the opening, a switch (118) stacked vertically below the fingerprint sensor; and a support plate (122) positioned between the fingerprint sensor (102) and the switch (118).
Abstract:
The disclosed architecture uses address mapping to map a block address on a host interface to an internal block address of a non-volatile memory (NVM) device. The block address is mapped to an internal chip select for selecting a Concurrently Addressable Unit (CAU) identified by the block address. The disclosed architecture supports generic NVM commands for read, write, erase and get status operations. The architecture also supports an extended command set for supporting read and write operations that leverage a multiple CAU architecture.
Abstract:
A media processing system and device 100 with improved power usage characteristics, improved audio functionality and improved media security is provided. Embodiments of the media processing system 100 include an audio processing subsystem 301 that operates independently of the host processor 304 for long periods of time, allowing the host processor 304 to enter a low power state. Other aspects of the media processing system 100 provide for enhanced audio effects such as mixing stored audio samples into real-time telephone audio. Still other aspects of the media processing system 100 provide for improved media security due to the isolation of decrypted audio data from the host processor 304.
Abstract:
A media processing system and device 100 with improved power usage characteristics, improved audio functionality and improved media security is provided. Embodiments of the media processing system 100 include an audio processing subsystem 301 that operates independently of the host processor 304 for long periods of time, allowing the host processor 304 to enter a low power state. Other aspects of the media processing system 100 provide for enhanced audio effects such as mixing stored audio samples into realtime telephone audio. Still other aspects of the media processing system 100 provide for improved media security due to the isolation of decrypted audio data from the host processor 304.
Abstract:
Electronic devices and equipment may communicate over a wired communications path. The wired communications path may include one or more wires and may be associated with a headphone cable. Data may be conveyed in the form of a digital data stream containing multiple traffic channels. The digital data stream may include superframes, each of which has multiple frames of data. The frames of data may each contain a number of data slots. Some of the slots in a superframe may be used exclusively by a particular one of the traffic channels. Boundary slots may be shared between traffic channels. Data interface circuitry may implement a data dispersion algorithm that determines the pattern in which data from each traffic channel is distributed within each boundary slot. Transmitting data interface circuitry may merge traffic channels into a single data stream. Receiving data interface circuitry may reconstruct the traffic channels.
Abstract:
Electronic devices and accessories are provided that may communicate over wired communications paths. The electronic devices may be portable electronic devices such as cellular telephones or media players and may have audio connectors such as 3.5 mm audio jacks. The accessories may be headsets or other equipment having mating 3.5 mm audio plugs and speakers for playing audio. Microphones may be included in an accessory to gather voice signals and noise cancellation signals. Analog-to-digital converter circuitry in the accessory may digitize the microphone signals. Digital voice signals and voice noise cancellation signals can be transmitted over the communications path and processed by audio digital signal processor circuitry in an electronic device. Digital-to- analog converter circuitry in the accessory may convert digital audio signals to analog speaker signals. Digital noise cancellation signals may use digital noise signals to cancel noise from digital audio signals that have been received from an electronic device.