Abstract:
This disclosure relates to performing cellular communication in unlicensed spectrum using a flexible slot structure. A cellular base station may perform a listen-before-talk procedure, and may transmit a reservation frame when the listen-before-talk procedure is successful. The reservation frame may reserve a wireless medium for a transmit opportunity. Transmission slots may be scheduled for communication with one or more wireless devices during the transmit opportunity. The transmission slots may be selected from multiple possible uplink transmission slot types and multiple possible downlink transmission slot types. Indications of the scheduled transmission slots, including indications of slot types of the scheduled transmission slots, may be provided to the wireless devices. Wireless communication may be performed between the cellular base station and the wireless devices according to the scheduled transmission slots.
Abstract:
Techniques are disclosed relating to broadcasting and receiving system information in a radio access network (RAN). In one embodiment, a base station includes at least one antenna, at least one radio, configured to perform cellular communication using a radio access technology (RAT), and one or more processors coupled to the radio. In this embodiment, the base station is configured to broadcast first system information blocks (SIBs) encoded using a first coding rate and a first identifier. In this embodiment, the base station is also configured to broadcast second SIBs encoded using a second coding rate that is lower than the first coding rate and a second identifier. In this embodiment, the second SIBs include only a portion of the information included in the first SIBs and the second SIBs are usable by user equipment devices (UEs) having a limited link budget to determine access parameters for the base station.
Abstract:
A user equipment (UE) device may communicate according to a new device category satisfying specified QoS (quality of service) requirements while also satisfying specified link budget requirements, and/or additional optimization requirements. The UE device may communicate with a cellular base station according to a first mode of operation associated with the new device category, and may switch to communicating with the cellular base station according to a second mode of operation associated with a second (pre-existing) device category in response to the link budget requirements exceeding a specified value and the quality of service requirements not being sensitive. The UE device may also switch to communicating with the cellular base station according to a third mode of operation associated with a third (pre-existing) device type in response to the link budget requirement not exceeding the specified value, or the QoS requirements being sensitive and a downlink throughput requirement exceeding a specified throughput value.
Abstract:
In some embodiments, a cellular modem that has reduced power requirements. The cellular modem architecture is divided into three orthogonal domains or modules, these being a control module, an uplink module, and a downlink module. Each of the uplink module and the downlink module is configured to be separately powered down without affecting operation of the other modules.
Abstract:
This disclosure relates to techniques for transmitting and receiving control information in the common search space on an enhanced physical downlink control channel (EPDCCH). According to some embodiments, a cellular base station may allocate some resource blocks of a subframe as the EPDCCH. The cellular base station may provide control information on a common search space in the EPDCCH for wireless user equipment (UE) devices in the cell provided by the cellular base station during a subframe. A UE device may monitor the EPDCCH to determine whether any indication on the common search space decodable by the UE device is contained in the EPDCCH, and may decode such information if present.
Abstract:
In some embodiments, a user equipment device (UE) may be configured to transmit an indication to a base station that the UE is link budget limited and receive control information encoded in a downlink control information (DCI) format. The DCI format may be determined based on the indication. The UE may decode the control information according to the DCI format. The DCI format may specify the number of bits for various parameters and may combine these parameters. Parameters may include format flag, hopping flag, modulation and coding scheme (MCS), redundancy version (RV), uplink index, downlink assignment index (DAI), carrier indicator, channel state information (CSI) request, sounding reference symbol (SRS) request, resource allocation type, localized / distributed indication, code-word swap, and so forth. Additionally, the DCI format may specify a bit length when using a particular number of resource blocks.
Abstract:
Techniques are disclosed relating to broadcasting and receiving system information in a radio access network (RAN). In one embodiment, a base station includes at least one antenna, at least one radio, configured to perform cellular communication using a radio access technology (RAT), and one or more processors coupled to the radio. In this embodiment, the base station is configured to broadcast first system information blocks (SIBs) encoded using a first coding rate and a first identifier. In this embodiment, the base station is also configured to broadcast second SIBs encoded using a second coding rate that is lower than the first coding rate and a second identifier. In this embodiment, the second SIBs include only a portion of the information included in the first SIBs and the second SIBs are usable by user equipment devices (UEs) having a limited link budget to determine access parameters for the base station.
Abstract:
This disclosure relates to performing cellular communication in unlicensed spectrum using a flexible slot structure. A cellular base station may perform a listen-before-talk procedure, and may transmit a reservation frame when the listen-before-talk procedure is successful. The reservation frame may reserve a wireless medium for a transmit opportunity. Transmission slots may be scheduled for communication with one or more wireless devices during the transmit opportunity. The transmission slots may be selected from multiple possible uplink transmission slot types and multiple possible downlink transmission slot types. Indications of the scheduled transmission slots, including indications of slot types of the scheduled transmission slots, may be provided to the wireless devices. Wireless communication may be performed between the cellular base station and the wireless devices according to the scheduled transmission slots.