Abstract:
A control mechanism (50) for an electronic device (10) comprises a cover glass (12) having an aperture (54) defined therein. The aperture (54) extends from an interior to an exterior of the device (10). A control member (52) is positioned within the aperture (54), coupled to an actuator (58). The control member (52) comprises a ceramic insert (52B) having a contact surface exposed to the exterior of the housing, operable to actuate the actuator (58) in response to a force on the contact surface. A bearing member (52A) 4is molded about the insert. The bearing member (52A) has a hardness less than that of the ceramic insert (52B), and less than that of the cover glass (12).
Abstract:
Embodiments describe an apparatus for magnetic charging and optical data transferring. The apparatus includes an inductive transmitting coil disposed within a housing, an optically transparent window disposed at a surface of the housing and above the inductive transmitting coil, and a first optical data transfer module disposed within the housing below the optically transparent window. The first optical data transfer module may be to perform at least one of emitting optical signals through the optically transparent window or detecting optical signals passing through the optically transparent window.
Abstract:
Methods and systems for manufacturing composite parts that include anodizable portions and non-anodizable portions such that an interface between the anodizable portions and non-anodizable portions are free of visible defects are described. The non-anodizable portions can be made of anodizable metals such as aluminum or aluminum alloy. The non-anodizable portions are made of material that do not generally form an anodic film, such as plastic, ceramic or glass materials. In particular, the methods described relate to manufacturing methods that are compatible with anodizing processes and avoid defects related to anodizing processes. In particular embodiments, the methods involve avoiding trapping of anodizing chemicals within a gap between an anodizable portion and a non-anodizable portion, which prevents the anodizing chemicals from disrupting the uptake of dye in a post-anodizing dyeing process.
Abstract:
A mobile phone may include an enclosure including a housing component and a front cover coupled to the housing component and defining a front exterior surface of the mobile phone. The mobile phone may further include a display positioned below the front cover and a sensor module positioned below a front-facing sensor region of the front cover and including a biometric sensing system. The biometric sensing system may include a first lens, a light emitter positioned below the first lens and configured to emit light onto an object, a second lens, and a light sensor below the second lens and configured to capture an image of the object. The sensor module may further include a proximity sensing system positioned between the first lens of the biometric sensing system and the second lens of the biometric sensing system.
Abstract:
According to some embodiments, a portable electronic device is described. The portable electronic device includes a housing having side walls and a back wall that define a cavity, where the back wall includes (i) a first section having a first exterior surface, and (ii) a second section having a second exterior surface that is parallel to and vertically displaced from the first exterior surface. The portable electronic device further includes a brace structure joined to the back wall, a trim structure welded to the brace structure, where the trim structure has an external surface that is vertically displaced from the second exterior surface, and a camera module disposed within the cavity and carried by the brace structure.