Abstract:
A display panel 10 is provided having a first substrate 72 including an electrode 110 configured to generate an electric field and a second substrate 92 including a black mask 88. The black mask 88 includes an aperture 152 configured to enable light to be transmitted through the aperture 152, wherein the aperture 152 is at least substantially rectangular and includes corners 162 that are not substantially chamfered. The display panel 10 also includes liquid crystal 78 disposed between the first and second substrates and configured to facilitate passage of light through the display panel 10 in response to the electric field.
Abstract:
An edge-lit backlight unit for a display is provided. In one embodiment, the backlight unit may include a light guide configured to receive light from a source and emit such light in a broad distribution to a turning film disposed over the light guide. The turning film may be configured to redirect light received from the light guide toward a normal of the turning film. In one embodiment, the light guide may be configured such that peak light distribution therefrom occurs at an incident angle of approximately sixty degrees, with broad light distribution substantially occurring over an angular range between incident angles of thirty-five and eighty- five degrees. Additionally, in one embodiment, the turning film may include multiple prisms that receive and redirect the light emitted from the light guide, and that include apex angles of less than or about sixty degrees. Additional edge-lit backlight units and methods are also disclosed.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the spectral characteristics of display light emitted from the display to achieve a desired effect on the human circadian system. For example, the display control circuitry may adjust the spectral characteristics of blue light emitted from the display based on the time of day such that a user' s exposure to the display light may result in a circadian response similar to that which would be experienced in natural light. The spectral characteristics of blue light emitted from the display may be adjusted by adjusting the relative maximum power levels provided to blue pixels in the display or by shifting the peak wavelength associated with blue light emitted from the display.
Abstract:
Methods for chemically strengthening the edges of glass sheets are provided. Voids can be formed in a mother sheet. The edges of these voids may correspond to a portion of the new edges that would normally be created during separation and free shaping of the mother sheet. The mother sheet can then be immersed in a chemical strengthener. The edges of the voids can be chemically strengthened in addition to the front and back sides of the mother sheet. After thin film processing and separation, each of the resulting individual sheets has been chemically strengthened on both sides and on a portion of its edges.
Abstract:
Sputter deposition systems and methods for depositing film coatings on one or more substrates are disclosed. The systems and methods are used to prevent or reduce an amount of defects within a deposited film. The methods involve removing defect-related particles that are formed during a deposition process from certain regions of the sputter deposition system and preventing the defect-related particles from detrimentally affecting the quality of the deposited film. In particular embodiments, methods involve creating a flow of gas from a deposition region to a particle collection region the sputter deposition system such that the defect-related particles are entrained within the flow of gas and away from the deposition region. In particular embodiments, the sputter deposition system is a meta-mode sputter deposition system.
Abstract:
A system and device for driving high resolution monitors while reducing artifacts thereon. Utilization of Z-inversion polarity driving techniques to drive pixels in a display reduces power consumption of the display but tends to generate visible horizontal line artifacts caused by capacitances present between the pixels and data lines of the display. By introducing a physical shield between the pixel and data line elements, capacitance therebetween can be reduced, thus eliminating the cause of the horizontal line artifacts. The shield may be a common voltage line (Vcom) of the display.
Abstract:
Methods and devices employing in-cell and/or on-cell touch sensor components, including in-cell and/or on-cell black matrix material (80) that also may serve as a touch drive or sense electrode, are provided. In one example, an electronic display (18) may include a lower substrate (64), an upper substrate (70), and a black matrix material (80) that shields light between pixels of the electronic display (18). At least a portion of the black matrix material (80) may form all or part of a component of a touch sensor of the electronic display (18).
Abstract:
An electronic device includes one or more transparent strain sensors configured to detect strain based on an amount of force applied to the electronic device, a component in the electronic device, and/or an input surface of the electronic device. The one or more transparent strain sensors may be included in or positioned below an input surface that is configured to receive touch inputs from a user. The area below the input surface can be visible to a user when the user is viewing the input surface. The one or more transparent strain sensors are formed with a nanostructure, including a nanomesh or nanowires.
Abstract:
A flexible display having an array of pixels or sub-pixels is provided. The display includes a flexible substrate and an array of thin film transistors (TFTs) corresponding to the array of pixels or sub-pixels on the substrate. The display also includes a first plurality of metal lines coupled to gate electrodes of the TFTs and a second plurality of metal lines coupled to source electrodes and drain electrodes of the TFTs. At least one of the first plurality of metal lines and the second plurality of metal lines comprises a non-stretchable portion in the TFT areas and a stretchable portion outside the TFT areas.
Abstract:
Devices and methods related to high-contrast liquid crystal displays (LCDs) are provided. For example, such an electronic device 10 may include an LCD 18 with two liquid crystal alignment layers 76, 82 not symmetric to one another and upper and lower polarizing layers 66, 68 respectively above and below the alignment layers 76, 82. Light transmittance through the plurality of pixels 42 may increase monotonically with gray scale voltage. The display 18 may operate using a gray scale level 0 voltage higher than a minimum gray scale level 0 voltage capability of the display. Additionally or alternatively, liquid crystal molecular alignment axes 110 of the two alignment layers 76, 82 may be offset from one another by an angle other than a multiple of 180 degrees. Additionally or alternatively, a first polarizing axis of the upper polarizing layer 66 or a second polarizing axis of the lower polarizing layer 68, or both, may be neither parallel nor perpendicular to one of the liquid crystal molecular alignment axes 110.