Abstract:
Methods and apparatus for processing substrates are provided herein. In some embodiments, a process kit for a substrate support includes: an upper edge ring made of quartz and having an upper surface and a lower surface, wherein the upper surface is substantially planar and the lower surface includes a stepped lower surface to define a radially outermost portion and a radially innermost portion of the upper edge ring.
Abstract:
In some embodiments, a feed structure to couple RF energy to a target may include a body having a first end to receive RF energy and a second end opposite the first end to couple the RF energy to a target, the body further having a central opening disposed through the body from the first end to the second end; a first member coupled to the body at the first end, wherein the first member comprises a first element circumscribing the body and extending radially outward from the body, and one or more terminals disposed in the first member to receive RF energy from an RF power source; and a source distribution plate coupled to the second end of the body to distribute the RF energy to the target, wherein the source distribution plate includes a hole disposed through the plate and aligned with the central opening of the body.
Abstract:
Embodiments of showerheads for use in a process chamber are provided herein. In some embodiments, a showerhead includes a first spiral channel extending from a central region to a peripheral region of the showerhead; a second spiral channel extending from a central region to a peripheral region of the showerhead, wherein the second spiral channel is interleaved with the first spiral channel and fluidly independent from the first spiral channel; a plurality of first channels extending from the first spiral channel to a plurality of first gas distribution holes on a lower surface of the showerhead, wherein each first channel is a singular channel extending at an angle; and a plurality of second channels extending from the second spiral channel to a plurality of second gas distribution holes on the lower surface of the showerhead, wherein each second channel is a singular channel extending at an angle.
Abstract:
Embodiments of process kit shields and physical vapor deposition (PVD) chambers incorporating same are provided herein. In some embodiments, a process kit shield for use in depositing a first material in a physical vapor deposition process may include an annular body defining an opening surrounded by the body, wherein the annular body is fabricated from the first material, and an etch stop coating formed on opening-facing surfaces of the annular body, the etch stop coating is fabricated from a second material that is different from the first material, the second material having a high etch selectivity with respect to the first material.
Abstract:
Embodiments of methods and apparatus for processing a substrate are provided herein. In some embodiments, a process kit for a substrate process chamber may include a ring having a body and a lip extending radially inward from the body, wherein the body has a first annular channel formed in a bottom of the body; an annular conductive shield having a lower inwardly extending ledge that terminates in an upwardly extending portion configured to interface with the first annular channel of the ring; and a conductive member electrically coupling the ring to the conductive shield when the ring is disposed on the conductive shield.
Abstract:
Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.
Abstract:
In some embodiments, a target assembly, for use in a substrate processing chamber having a process shield, may include a backing plate having a first side and an opposing second side, wherein the second side comprises a first surface having a first diameter bounded by a first edge; a target material having a first side bonded to the first surface of the backing plate; wherein the first edge is an interface between the backing plate and the target material; and a plurality of slots disposed along an outer periphery of the backing plate to align the target assembly with respect to the process shield during use, wherein the plurality of slots are formed in the first side of the backing plate and extend only partially into the backing plate.
Abstract:
In some embodiments, substrate processing apparatus may include a chamber body; a lid disposed atop the chamber body; a target assembly coupled to the lid, the target assembly including a target of material to be deposited on a substrate; an annular dark space shield having an inner wall disposed about an outer edge of the target; a seal ring disposed adjacent to an outer edge of the dark space shield; and a support member coupled to the lid proximate an outer end of the support member and extending radially inward such that the support member supports the seal ring and the annular dark space shield, wherein the support member provides sufficient compression when coupled to the lid such that a seal is formed between the support member and the seal ring and the seal ring and the target assembly.
Abstract:
A process kit cover for chemical vapor deposition processes is disclosed according to one embodiment of the invention. The process kit cover may include a protrusion from the top surface of the process kit cover. The protrusion is adjacent to a wafer facing surface. The protrusion decreases oxide buildup on the process kit cover and the wafer facing surface during repeated deposition processes. The process kit cover may also be in minimal thermal contact at the interface with a lower support structure, such as a ceramic collar or pedestal, according to another embodiment of the invention. Minimal thermal contact may be achieved by placing an insulator between the process kit cover and the lower support structure or by creating a gap or gaps between the process kit cover and the lower support structure. Ambient atmosphere may provide thermal insulating within the gap or gaps.
Abstract:
A target assembly for use in a substrate processing system may include a plate having a first side and an opposing second side, wherein the second side comprises a target supporting surface extending from the second side in a direction normal to the second side, wherein the target supporting surface has a first diameter and is bounded by a first edge; and a target having a diameter that is greater than the first diameter of the target supporting surface and having a first side parallel to the second side of the plate, wherein the first side of the target comprises a central portion bonded to the target supporting surface and a peripheral portion extending outward past the first edge of the plate and having a distance of about 0.040 to about 0.080 inches between the peripheral portion of the target and the second side of the plate.