Abstract:
An apparatus to measure the position of a mark, the apparatus including an illumination arrangement to direct radiation across a pupil of the apparatus, the illumination arrangement comprising an illumination source to provide multiple-wavelength radiation of substantially equal polarization and a wave plate to alter the polarization of the radiation in dependency of the wavelength, such that radiation of different polarization is supplied; an objective lens to direct radiation on the mark using the radiation supplied by the illumination arrangement while scanning the radiation across the mark in a scanning direction; a radiation processing element to process radiation that is diffracted by the mark and received by the objective lens; and a detection arrangement to detect variation in an intensity of radiation output by the radiation processing element during the scanning and to calculate from the detected variation a position of the mark in at least a first direction of measurement.
Abstract:
An apparatus (AS) measures positions of marks (202) on a lithographic substrate (W). An illumination arrangement (940, 962, 964) provides off-axis radiation from at least first and second regions. The first and second source regions are diametrically opposite one another with respect to an optical axis (O) and are limited in angular extent. The regions may be small spots selected according to a direction of periodicity of a mark being measured, or larger segments. Radiation at a selected pair of source regions can be generated by supplying radiation at a single source feed position to a self-referencing interferometer. A modified half wave plate is positioned downstream of the interferometer, which can be used in the position measuring apparatus. The modified half wave plate has its fast axis in one part arranged at 45° to the fast axis in another part diametrically opposite.
Abstract:
Disclosed is a method for a metrology measurement on an area of a substrate comprising at least a portion of a target structure. The method comprises receiving a radiation information representing a portion of radiation scattered by the are, and using a filter in a Fourier domain for removing or suppressing at least a portion of the received radiation information that does not relate to radiation that has been scattered by the target structure for obtaining a filtered radiation information for the metrology measurement, wherein characteristics of the filter are based on target information about the target structure.
Abstract:
An apparatus to measure the position of a mark, the apparatus including an objective lens to direct radiation on a mark using radiation supplied by an illumination arrangement; an optical arrangement to receive radiation diffracted and specularly reflected by the mark, wherein the optical arrangement is configured to provide a first image and a second image, the first image being formed by coherently adding specularly reflected radiation and positive diffraction order radiation and the second image being formed by coherently adding specularly reflected radiation and negative diffraction order radiation; and a detection arrangement to detect variation in an intensity of radiation of the first and second images and to calculate a position of the mark in a direction of measurement therefrom.
Abstract:
Disclosed is a method for a metrology measurement on an area of a substrate comprising at least a portion of a target structure. The method comprises receiving a radiation information representing a portion of radiation scattered by the are, and using a filter in a Fourier domain for removing or suppressing at least a portion of the received radiation information that does not relate to radiation that has been scattered by the target structure for obtaining a filtered radiation information for the metrology measurement, wherein characteristics of the filter are based on target information about the target structure.