Abstract:
An apparatus to measure the position of a mark, the apparatus including an objective lens to direct radiation on a mark using radiation supplied by an illumination arrangement; an optical arrangement to receive radiation diffracted and specularly reflected by the mark, wherein the optical arrangement is configured to provide a first image and a second image, the first image being formed by coherently adding specularly reflected radiation and positive diffraction order radiation and the second image being formed by coherently adding specularly reflected radiation and negative diffraction order radiation; and a detection arrangement to detect variation in an intensity of radiation of the first and second images and to calculate a position of the mark in a direction of measurement therefrom.
Abstract:
A lithographic apparatus includes an alignment sensor including a self-referencing interferometer for reading the position of an alignment target comprising a periodic structure. An illumination optical system for focusing radiation into a spot on said structure. An asymmetry detection optical system receives a share of positive and negative orders of radiation diffracted by the periodic structure, and forms first and second images of said spot on first and second detectors respectively, wherein said negative order radiation is used to form the first image and said positive order radiation is used to form the second image. A processor for processing together signals from said first and second detectors representing intensities of said positive and negative orders to produce a measurement of asymmetry in the periodic structure. The asymmetry measurement can be used to improve accuracy of the position read by the alignment sensor.
Abstract:
Disclosed is a method of determining a characteristic of interest relating to a structure on a substrate formed by a lithographic process, the method comprising: obtaining an input image of the structure; and using a trained neural network to determine the characteristic of interest from said input image. Also disclosed is a reticle comprising a target forming feature comprising more than two sub-features each having different sensitivities to a characteristic of interest when imaged onto a substrate to form a corresponding target structure on said substrate. Related methods and apparatuses are also described.
Abstract:
Disclosed is an illumination source for generating measurement radiation for an inspection apparatus. The source generates at least first measurement radiation and second measurement radiation such that the first measurement radiation and the second measurement radiation interfere to form combined measurement radiation modulated with a beat component. The illumination source may be a HHG source. Also disclosed is an inspection apparatus comprising such a source and an associated inspection method.
Abstract:
Described is a metrology apparatus for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology apparatus comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
A method for determining one or more optimized values of an operational parameter of a sensor system configured for measuring a property of a substrate is disclosed the method comprising: determining a quality parameter for a plurality of substrates; determining measurement parameters for the plurality of substrates obtained using the sensor system for a plurality of values of the operational parameter; comparing a substrate to substrate variation of the quality parameter and a substrate to substrate variation of a mapping of the measurement parameters; and determining the one or more optimized values of the operational parameter based on the comparing.
Abstract:
Apparatus, systems, and methods are used for detecting the alignment of a feature on a substrate using a polarization independent interferometer. The apparatus, system, and methods include optical elements that receive light that has diffracted or scattered from a mark on a substrate. The optical elements may split the diffracted light into multiple subbeams of light which are detected by one or more detectors. The diffracted light may be combined optically or during processing after detection. The system may determine alignment and/or overlay based on the received diffracted light having any polarization angle or state.
Abstract:
Disclosed is a method of measuring a periodic structure on a substrate and associated metrology tools therefor. The method comprises configuring an illumination numerical aperture profile and/or orientation of the periodic structure for a measurement based on a detection numerical aperture profile and a ratio of target pitch and said illumination wavelength such that at least a pair of complementary diffraction orders are captured within the detection numerical aperture profile; and measuring the periodic structure using the configured illumination numerical aperture profile and/or orientation of the periodic structure.
Abstract:
Disclosed is a method for re-imaging an image to correspond to a desired illumination scheme. The method comprises obtaining a first image corresponding to a first illumination scheme and convolving the first image with a Fourier transform of an incident mutual intensity function describing the desired illumination scheme to obtain a reimaged image corresponding to the desired illumination scheme.
Abstract:
Disclosed is a method for obtaining a computationally determined interference electric field describing scattering of radiation by a pair of structures comprising a first structure and a second structure on a substrate. The method comprises determining a first electric field relating to first radiation scattered by the first structure; determining a second electric field relating to second radiation scattered by the second structure; and computationally determining the interference of the first electric field and second electric field, to obtain a computationally determined interference electric field.