Abstract:
A method for determining an image of a mask pattern in a resist coated on a substrate, the method including determining an aerial image of the mask pattern at substrate level; and convolving the aerial image with at least two orthogonal convolution kernels to determine a resist image that is representative of the mask pattern in the resist.
Abstract:
A method for reducing an effect of flare produced by a lithographic apparatus for imaging a design layout onto a substrate is described. A flare map in an exposure field of the lithographic apparatus is simulated by mathematically combining a density map of the design layout at the exposure field with a point spread function (PSF), wherein system-specific effects on the flare map may be incorporated in the simulation. Location-dependent flare corrections for the design layout are calculated by using the determined flare map, thereby reducing the effect of flare.
Abstract:
The present disclosure relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present disclosure significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present disclosure allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present disclosure allows for free-form optimization, without the constraints required by conventional optimization techniques.
Abstract:
A three-dimensional mask model that provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
The present disclosure relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present disclosure significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present disclosure allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present disclosure allows for free-form optimization, without the constraints required by conventional optimization techniques.
Abstract:
The present invention relates to lithographic apparatuses and processes, and more particularly to multiple patterning lithography for printing target patterns beyond the limits of resolution of the lithographic apparatus. A method of splitting a pattern to be imaged onto a substrate via a lithographic process into a plurality of sub-patterns is disclosed, wherein the method comprises a splitting step being configured to be aware of requirements of a co-optimization between at least one of the sub-patterns and an optical setting of the lithography apparatus used for the lithographic process. Device characteristic optimization techniques, including intelligent pattern selection based on diffraction signature analysis, may be integrated into the multiple patterning process flow.