Abstract:
A method including: obtaining a thin-mask transmission function of a patterning device and a M3D model for a lithographic process, wherein the thin-mask transmission function represents a continuous transmission mask and the M3D model at least represents a portion of M3D attributable to multiple edges of structures on the patterning device; determining a M3D mask transmission function of the patterning device by using the thin-mask transmission function and the M3D model; and determining an aerial image produced by the patterning device and the lithographic process, by using the M3D mask transmission function.
Abstract:
Disclosed herein is a computer-implemented method of image simulation for a device manufacturing process, the method comprising: identifying regions of uniform optical properties from a portion or an entirety of a substrate or a patterning device, wherein optical properties are uniform within each of the regions; obtaining an image for each of the regions, wherein the image is one that would be formed from the substrate if the entirety of the substrate or the patterning device has the same uniform optical properties as that region; forming a stitched image by stitching the image for each of the regions according to locations of the regions in the portion or the entirety of the substrate of the patterning device; forming an adjusted image by applying adjustment to the stitched image for at least partially correcting for or at least partially imitating an effect of finite sizes of the regions.
Abstract:
A method including: obtaining a thin-mask transmission function of a patterning device and a M3D model for a lithographic process, wherein the thin-mask transmission function is a continuous transmission mask (CTM) and the M3D model at least represents a portion of M3D attributable to multiple edges of structures on the patterning device; determining a M3D mask transmission function of the patterning device by using the thin-mask transmission function and the M3D model; and determining an aerial image produced by the patterning device and the lithographic process, by using the M3D mask transmission function.
Abstract:
A three-dimensional mask model that provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
A three-dimensional mask model that provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
A computer-implemented method for simulating a scattered radiation field of a patterning device including one or more features, in a lithographic projection apparatus, the method including: determining a scattering function of the patterning device using one or more scattering functions of feature elements of the one or more features; wherein at least one of the one or more features is a three-dimensional feature, or the one or more scattering functions characterize scattering of incident radiation fields at a plurality of incident angles on the feature elements.
Abstract:
A three-dimensional mask model of the invention provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
A method including: obtaining a characteristic of a portion of a design layout; determining a characteristic of M3D of a patterning device including or forming the portion; and training, by a computer, a neural network using training data including a sample whose feature vector includes the characteristic of the portion and whose supervisory signal includes the characteristic of the M3D. Also disclosed is a method including: obtaining a characteristic of a portion of a design layout; obtaining a characteristic of a lithographic process that uses a patterning device including or forming the portion; determining a characteristic of a result of the lithographic process; training, by a computer, a neural network using training data including a sample whose feature vector includes the characteristic of the portion and the characteristic of the lithographic process, and whose supervisory signal includes the characteristic of the result.
Abstract:
A method including: obtaining at least a characteristic of deformation of a resist layer in a first direction, as if there were no deformation in any directions perpendicular to the first direction; obtaining at least a characteristic of deformation of the resist layer in a second direction as if there were no deformation in the first direction, the second direction being perpendicular different to from the first direction; and obtaining at least a characteristic of three-dimensional deformation of the resist layer based on the characteristic of the deformation in the first direction and the characteristic of the deformation in the second direction.