AN OPTICAL SYSTEM IMPLEMENTED IN A SYSTEM FOR FAST OPTICAL INSPECTION OF TARGETS

    公开(公告)号:US20250060684A1

    公开(公告)日:2025-02-20

    申请号:US18724286

    申请日:2022-12-14

    Abstract: A system includes optical devices, reflective devices, a movable reflective device, and a detector. The optical devices are disposed at a first plane and around a axis of the system and receive scattered radiation from targets. The reflective devices are disposed at at least a second plane and around the axis. Each of the reflective devices receives the scattered radiation from a corresponding one of the optical devices. The movable reflective device is disposed along the axis and receives the scattered radiation from each of the reflective devices. The detector receives the scattered radiation from the movable reflective device.

    ON CHIP SENSOR FOR WAFER OVERLAY MEASUREMENT

    公开(公告)号:US20240361703A1

    公开(公告)日:2024-10-31

    申请号:US18769032

    申请日:2024-07-10

    CPC classification number: G03F7/70633 G02B6/1225 G02B26/0833

    Abstract: A sensor apparatus includes a sensor chip, an illumination system, a first optical system, a second optical system, and a detector system. The illumination system is coupled to the sensor chip and transmits an illumination beam along an illumination path. The first optical system is coupled to the sensor chip and includes a first integrated optic to configure and transmit the illumination beam toward a diffraction target on a substrate, disposed adjacent to the sensor chip, and generate a signal beam including diffraction order sub-beams generated from the diffraction target. The second optical system is coupled to the sensor chip and includes a second integrated optic to collect and transmit the signal beam from a first side to a second side of the sensor chip. The detector system is configured to measure a characteristic of the diffraction target based on the signal beam transmitted by the second optical system.

    MONOLITHIC PARTICLE INSPECTION DEVICE
    4.
    发明公开

    公开(公告)号:US20230266255A1

    公开(公告)日:2023-08-24

    申请号:US18012801

    申请日:2021-06-09

    CPC classification number: G01N21/956 G01N2021/95676

    Abstract: Systems, apparatuses, and methods are provided for detecting a particle on a substrate surface. An example method can include receiving, by a grating structure, coherent radiation from a radiation source. The method can further include generating, by the grating structure, a focused coherent radiation beam based on the coherent radiation. The method can further include transmitting, by the grating structure, the focused coherent radiation beam toward a region of a surface of a substrate. The method can further include receiving, by the grating structure, photons scattered from the region in response to illuminating the region with the focused coherent radiation beam. The method can further include measuring, by a photodetector, the photons received by the grating structure. The method can further include generating, by the photodetector and based on the measured photons, an electronic signal for detecting a particle located in the region of the surface of the substrate.

    METROLOGY MARK STRUCTURE AND METHOD OF DETERMINING METROLOGY MARK STRUCTURE

    公开(公告)号:US20220350268A1

    公开(公告)日:2022-11-03

    申请号:US17765214

    申请日:2020-09-25

    Abstract: A structure of a semiconductor device with a sub-segmented grating structure as a metrology mark and a method for configuring the metrology mark. The method for configuring a metrology mark may be used in a lithography process. The method may include determining an initial characteristic function of an initial metrology mark disposed within a layer stack. The method also includes perturbing one or more variables of the plurality of subsegments of the metrology mark (e.g., pitch, duty cycle, and/or line width of the plurality of subsegments) and further perturbing a thickness of one or more layers within the layer stack. The method further includes iteratively performing the perturbations until a minimized characteristic function of an initial metrology mark is determined to set a configuration for the plurality of subsegments.

    INTENSITY MEASUREMENTS USING OFF-AXIS ILLUMINATION

    公开(公告)号:US20250130512A1

    公开(公告)日:2025-04-24

    申请号:US18682678

    申请日:2022-07-21

    Abstract: Systems, apparatuses, and methods are provided for measuring intensity using off-axis illumination. An example method can include illuminating a region of a surface of a substrate with a first radiation beam at a first incident angle and, in response, measuring a first set of photons diffracted from the region. The example method can further include illuminating the region with a second radiation beam at a second incident angle and, in response, measuring a second set of photons diffracted from the region. The example method can further include generating measurement data for the region based on the measured first set of photons and the measured second set of photons.

    ON CHIP SENSOR FOR WAFER OVERLAY MEASUREMENT

    公开(公告)号:US20220283516A1

    公开(公告)日:2022-09-08

    申请号:US17637942

    申请日:2020-08-05

    Abstract: A sensor apparatus includes a sensor chip, an illumination system, a first optical system, a second optical system, and a detector system. The illumination system is coupled to the sensor chip and transmits an illumination beam along an illumination path. The first optical system is coupled to the sensor chip and includes a first integrated optic to configure and transmit the illumination beam toward a diffraction target on a substrate, disposed adjacent to the sensor chip, and generate a signal beam including diffraction order sub-beams generated from the diffraction target. The second optical system is coupled to the sensor chip and includes a second integrated optic to collect and transmit the signal beam from a first side to a second side of the sensor chip. The detector system is configured to measure a characteristic of the diffraction target based on the signal beam transmitted by the second optical system.

Patent Agency Ranking