Abstract:
A control system for a positioning system, for positioning a driven object, e.g. a lithographic apparatus, in N dimension has M sensors, where M>N. A transformation module converts the M measurements pointed by the sensors into a positional estimate in N dimensions taking into account compliance of the driven object.
Abstract:
During a scanning exposure a support structure is moveable relative to a beam of radiation conditioned by an illuminator along a scanning path, and a substrate table is movable relative to the patterned radiation beam along a scanning path. An image transformation optic is arranged between the support structure and the substrate table. The image transformation optic is movable so as to control the characteristics of the image formed on the substrate such that the image can be transformed between a first configuration and a second configuration, the second configuration being inverted relative to the first configuration in a direction along the scanning path.
Abstract:
The invention relates to a sensor (SE) comprising two shear-mode piezoelectric transducers (TR1, TR2), wherein each piezoelectric transducer comprises a bottom surface (BS) and a top surface (TS), wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces are configured to be attached to an object (OB) to be measured.
Abstract:
A lithographic apparatus is described, the apparatus comprising: n illumination system configured to condition a radiation beam; otary drive adapted to move a flexible patterning device along a closed loop trajectory, the closed loop trajectory having a straight portion and a curved portion, a curvature of the flexible patterning device substantially corresponding to a curvature of the closed loop trajectory; a substrate table constructed to hold a substrate; wherein the rotary drive comprises a pulley assembly configured to: engage, during use, the flexible patterning device, and maintain, during use, a portion of the flexible patterning device that is situated along the straight portion of the trajectory substantially flat, the substantially flat portion of the patterning device being configured to impart the radiation beam with a pattern in its cross-section to form a patterned radiation beam, and; a projection system configured to project the patterned radiation beam onto a target portion of the substrate.
Abstract:
A sensor includes two shear-mode piezoelectric transducers, wherein each piezoelectric transducer has a bottom surface and a top surface, wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces of the piezoelectric transducers are configured to be attached to an object to be measured.
Abstract:
A sensor includes two shear-mode piezoelectric transducers, wherein each piezoelectric transducer has a bottom surface and a top surface, wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces of the piezoelectric transducers are configured to be attached to an object to be measured.
Abstract:
A stage positioning system, includes a first body, a second body and a coupling arranged to couple the first body and the second body to each other. The coupling includes a visco-elastic element arranged to couple the first body and the second body to each other. The stage positioning system may further include a sensor to provide a signal representative of a position of the first body. The stage positioning system may further include an actuator to move the first body. The second body may be arranged to couple the actuator and the coupling to each other.