Abstract:
This invention relates to a system of communicating with a radio frequency identification (RFID) transponder microchip (IC) for the purpose of accessing pre¬ programmed data. Such system involves direct electrical contact between the system reading the data from the memory in the transponder IC and the IC itself via two mechanical contact points. This system provides an interface with a transponder IC in order to energize the IC. Once the presence of the transponder IC is detected, the host system can read or write to and process preprogrammed data stored in the IC.
Abstract:
A system and method to obtain (19) unipolar EEG signals from electrodes (13) attached to a patient's head (14). The EEG signals are detected by the electrodes and transmitted over a patient cable (16) to the EEG data acquisition and analysis system (12). The system (12) generates all power spectrum, bispectrum, and higher-order spectrum arrays. These arrays are then used in conjunction with clinically predetermined coefficient arrays to produce diagnostic indices. These indices are sent to the host computer (18) and are displayed on the graphics display (2). Printed output of the diagnostic index is also available on the hard copy output device (22) which is connected to the microcomputer (18). The operator interacts with the acquisition and analysis components of the system by means of a user input device (24) with feedback on the graphics display (20).
Abstract:
Disclosed is a physiological electrical signal connector system (20) with one connector (20a) connected to an electrode set (24) and another connector (20b) connected to a digital signal convertor (14) which leads to a patient monitor (10). Each type of electrode set has a specific code identified with it and when connected to the digital signal convertor (14), the connector code is recognized by the digital signal convertor. The connector code is then relayed to the monitor (10) which will self-configure based on the identified code.
Abstract:
Disclosed is a system, comprising a microcomputer (18), a user input device (24), a graphics display (20), a hard copy output device (22), a method to derive a diagnostic index indicative of a selected cerebral phenomena which obtains (19) unipolar EEG signals in an acquisition, and an analysis system (12) from regions of interest on both the left and right hemispheres of the brain of a subject (15). The system uses high gain, low noise amplifiers to maximize the dynamic range for low energy wave components of the signals. Band-pass filtering is used to reduce noise and to avoid an alias. The system applies commonly used digital signal processing (DSP) techniques to digitize, to low pass filter (100Hz), and to decimate the signals. Power spectral, bi-spectral, and higher order spectral processing is then performed.
Abstract:
Disclosed is a system and method for providing information to the user of a medical monitoring or diagnostic device to aid in the clinical decision making process. The preferred embodiment uses two estimators or predictors of the same physiological quantity, with each of the estimators being designed to detect specific states or artifacts in the estimated parameter and thus operating at a different point on its respective ROC curve; one chosen to provide high sensitivity, the other chosen to provide high specificity. The divergence between the estimators is indicated by the use of a shaded region between their respective time trends. The use of 2 estimators of the same parameters with different performance characteristics allows the system and method of the present invention to derive additional information about the underlying physiologic process over and above that which would be available from a single estimator. The system and method of the present invention can derive information from not only the instantaneous values of the estimators and the difference between them, but also from the time trend of the difference.
Abstract:
Disclosed is a physiological electrical signal connector system (20) with one connector (20a) connected to an electrode set (24) and another connector (20b) connected to a digital signal convertor (14) which leads to a patient monitor (10). Each type of electrode set has a specific code identified with it and when connected to the digital signal convertor (14), the connector code is recognized by the digital signal convertor. The connector code is then relayed to the monitor (10) which will self-configure based on the identified code.
Abstract:
Disclosed is a system and method to derive a diagnostic index indicative of a selected cerebral phenomena which obtains 19 unipolar EEG signals from regions of interest on both the left and right hemispheres of a subject's brain. The system uses high-gain, low-noise amplifiers to maximize the dynamic range for low energy wave components of the signals. Band-pass filtering is used to reduce noise and to avoid aliasing. The system applies commonly used digital signal processing (DSP) techniques to digitize, to low-pass filter (100 Hz), and to decimate the signals. Power spectral, bispectral, and higher-order spectral processing is then performed. In a preferred embodiment, the system divides the most recent 63 seconds of digitized EEG data from each lead into 60 4-second intervals, each with 3 seconds of overlap with the previous interval. For a selected set of derived leads, the system produces auto power spectrum, autobispectrum, and auto higher-order spectrum variables, by using either a Fast Fourier Transform (FFT) based approach or a parametric approach. Any pair of leads can be combined to compute cross power spectrum, cross bispectrum, and cross higher-order spectrum variables. The spectral values are separated into bins and a value representative of the bin is selected or computed and then each value is multiplied by a predetermined coefficient. The resulting products are summed to arrive at the diagnostic index.
Abstract:
Disclosed is a system and method for providing information to the user of a medical monitoring or diagnostic device to aid in the clinical decision making process. The preferred embodiment uses two estimators or predictors of the same physiological quantity, with each of the estimators being designed to detect specific states or artifacts in the estimated parameter and thus operating at a different point on its respective ROC curve; one chosen to provide high sensitivity, the other chosen to provide high specificity. The divergence between the estimators is indicated by the use of a shaded region between their respective time trends. The use of 2 estimators of the same parameters with different performance characteristics allows the system and method of the present invention to derive additional information about the underlying physiologic process over and above that which would be available from a single estimator. The system and method of the present invention can derive information from not only the instantaneous values of the estimators and the difference between them, but also from the time trend of the difference.
Abstract:
Disclosed is a real time cerebral diagnostic apparatus and method for quantitatively evaluating, in a noninvasive manner, cerebral phenomena such as the depth and adequacy of anesthesia pain responses during surgical stress, acute cerebral ischemia, level of consciousness, degree of intoxication and ongoing normal and abnormal cognitive processes. A suitable electrode and amplifier system is used to obtain high resolution biopotentials from the regions of interest. Surface electroencephalographic (EEG) signals are filtered to allow the acquisition of frequencies between 2 and 500 Hz, then digitized and transmitted over a high speed serial line to a host computer where a 32 second long signal is divided into 128 consecutive 0.25 second intervals. Digital EEG data from unipolar leads is normalized and the dynamic phase and density relations within the signal are then characterized by estimating the third-order autocorrelation function or autobispectrum using either a frequency domain, or parametric approach. Paired EEG data from corresponding left and right hemisphere leads is used to characterize the dynamic phase and density relations between hemispheres by estimating the third order crosscorrelation function or crossbispectrum using either frequency domain or parametric techniques. Under certain specific filtering circumstances the power spectrum and crosspower spectrum are also computed. A reference clinical database is used to identify frequency pairs most sensitive to particular interventions or diagnostic states of interest. The values at these frequency pairs are then extracted from the patient's autobicoherence, autobispectral density, autobiphase, crossbicoherence, crossbispectral density, and crossbiphase arrays. The ensemble of values for the particular diagnostic determination is used to compute an index which serves as the diagnostic criterion by which the patient's state is judged. Any diagnostic index can be continuously displayed on a graphics terminal for real-time diagnostic monitoring or can be sent to a hard copy device to generate reports for the medical record.
Abstract:
A sensor system which includes a biopotential signal monitor, a smart sensor and the accompanying hardware and software interface which authenticates the source and validity of the smart sensor and also verifies that the smart sensor meets various criteria for use.