Abstract:
PROBLEM TO BE SOLVED: To provide an array of electrodes allowing a user to easily adjust to the correct size of the patient's head. SOLUTION: The electrode array 10 includes only three electrodes 12a, 12b, 12c for monitoring an electrophysiological signal, and includes a body 14, a satellite body 15, and a flexible body with a flexible connector for connecting the body 14 and the satellite body 15. Two electrodes 12a, 12b out of the three electrodes are disposed on the body and the electrode 12c of the rest is disposed on the satellite body 15. A conductor 16 is wired on the flexible body to carry signals from the electrodes. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide an array of electrodes allowing a user to easily adjust to the correct size of the patient's head. SOLUTION: This array is self-adhesive, pre-gelled and disposable. The array fits easily over the temple and forehead areas where EEG signals can be acquired by specially designed monitors for purposes of monitoring a number of bodily phenomena, including but not limited to, depth of anesthesia, ischemia, and burst suppression. The array is connected to the monitor via a tab connector that is integral to the device. The tab connector is insertable into a reusable connector that is part of a monitoring system. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
A system and method of identifying and removing artifact from radio frequency noise from biopotentials identifies epochs contaminated with radio frequency noise. Contaminated epochs are then replaced with recent uncontaminated epochs stored in a buffer, depending on the current level of artifact and the availability of suitable data. Discontinuities arising at the beginning of the replaced epochs are smoothed by means of a windowing function.
Abstract:
A system and method for controlling the administration of medication to a patient utilizes adaptive feedback to achieve and maintain a target effect in said patient. A sensor package having one or more sensors is used to sense an attribute of the patient and to provide a parameter indicating the attribute being sensed. A medication delivery controller accepts one or more parameters from the sensor package and uses these parameters to determine the effect of a medication on a patient and the concentration level of medication that will achieve a desired effect. The medication delivery controller controls the medication delivery unit to deliver the medication at a rate determined to achieve said target concentration level of said medication in said patient. If the patient's response to a given medication changes as a result of external stimuli, the medication delivery controller can detect this change and determine a new concentration level of medication which will achieve the desired effect. The medication delivery controller can steer the medication delivery unit to administer an amount of medication to reach this new concentration level.
Abstract:
A method for measuring bioelectric impedance in real time, in the presence of interference and noise is disclosed. A small electric current is injected into a biopotential electrode system, and then the measurement is tested for contamination by electrical interference or other noise sources.
Abstract:
A system and method for controlling the administration of medication to a patient utilizes adaptive feedback to achieve and maintain a target effect in said patient. A sensor package having one or more sensors is used to sense an attribute of the patient and to provide a parameter indicating the attribute being sensed. A medication delivery controller accepts one or more parameters from the sensor package and uses these parameters to determine the effect of a medication on a patient and the concentration level of medication that will achieve a desired effect. The medication delivery controller controls the medication delivery unit to deliver the medication at a rate determined to achieve said target concentration level of said medication in said patient. If the patient's response to a given medication changes as a result of external stimuli, the medication delivery controller can detect this change and determine a new concentration level of medication which will achieve the desired effect. The medication delivery controller can steer the medication delivery unit to administer an amount of medication to reach this new concentration level.
Abstract:
The present invention is a system and method that produces features and indices that indicate the presence or absence of a disease or condition, or of the progression of a disease or condition. The system and method of the present invention also produce features and indices that predict responsiveness to medication from a premedication baseline. The system and method of the present invention further incorporates a testing methodology to improve the performance characteristics of the features or indices. To obtain such features and indices, time domain, power spectrum, bispectrum and higher order spectrum values are derived from biopotential signals taken from the subject being tested.
Abstract:
This invention relates to a system of communicating with a radio frequency identification (RFID) transponder microchip (IC) for the purpose of accessing pre¬ programmed data. Such system involves direct electrical contact between the system reading the data from the memory in the transponder IC and the IC itself via two mechanical contact points. This system provides an interface with a transponder IC in order to energize the IC. Once the presence of the transponder IC is detected, the host system can read or write to and process preprogrammed data stored in the IC.
Abstract:
The present invention provides a system and method for determining and maintaining a concentration level of medication in a patient sufficient to achieve and maintain a desired effect on that patient. Generally speaking, in accordance with one embodiment of the invention, a medication delivery controller uses a patient response profile to determine a concentration of medication in the patient that will achieve the desired effect on the patient. The patient response profile is a graphical, tabular or analytical expression of the relationship between the concentration of a medication and the effect of the medication at the specific concentration. Using this information, the medication delivery controller provides instructions to a medication delivery unit such as, for example, an infusion pump or inhalation device, to deliver the medication to the patient at a rate that will achieve the desired concentration level of the medication in the patient.
Abstract:
The disclosed filter (120) removes cardiac artifacts (310) from signals representative of a patient's cerebral activity. The filter preferably replaces portions of the signal including artifacts with temporally adjacent artifact free portions.