Abstract:
A valve drive of an internal combustion engine, which has a reciprocating poppet valve and a spring element which impinges the closed reciprocating poppet valve with force against the action of a valve seat. The force characteristics are substantially independent of the lift characteristics of the reciprocating poppet valve. The spring element is part of a snap-in locking device, which is stationarily mounted in the engine and surrounds the valve stem of the reciprocating poppet valve. The snap-in locking device has snap-in elements arranged in the power flux between the spring element and reciprocating poppet valve. The snap-in elements are supported in the direction of closure of the reciprocating poppet valve on a snap-in surface of the valve stem when the reciprocating poppet valve is closed and on a snap-in surface of the snap-in locking device when the reciprocating poppet valve is open.
Abstract:
A valve drive of an internal combustion engine is provided, having a camshaft (1) which includes a carrier shaft (2) and a cam part (3), which is arranged thereon in a rotationally fixed manner and displaceable between two axial positions and which has at least one cam group of directly adjoining cams (5, 6) having different cam elevations and an axial gate (8) having two cam tracks (9, 10) that extend axially along the circumference in opposing directions, and further having an actuating element (11) that can be coupled to the axial gate for displacing the cam part in the direction of both cam tracks. The cam tracks are arranged one behind the other in the circumferential direction of the axial gate (8).
Abstract:
A camshaft (1) is provided for a stroke-variable valve drive of an internal combustion engine with a carrier shaft (2) and a cam part (3) that is arranged locked in rotation and movable in the axial direction on the carrier shaft and that is assembled from a cam carrier (4) and a sleeve (5). The cam carrier has a cam group (7, 8) of directly adjacent cams (9, 10, 11, 12) with different cam strokes and an adapter end (6) on which the sleeve is mounted. The sleeve has a setting groove (17) in the form of a groove that extends across an extent of the sleeve and that is used for the specification of an axial setting groove track for an activation pin (18) moving the cam part on the carrier shaft. The setting groove is produced in the sleeve through non-metal-cutting shaping of sheet-metal material.
Abstract:
Actuator device of a sliding cam system, having at least one sliding cam (2) and having an engagement pin (9) which protrudes out of a housing (6), wherein the housing (6) can be fastened to a component of a cylinder head or to the cylinder head of an internal combustion engine, and it is possible for contact to be made with the engagement pin (9) by at least one groove (3) of the sliding cam system, which groove (3) has at least one ejection ramp (4), and wherein, within the housing (6), the engagement pin (9) has a permanent holding magnet (11) and, adjoining it, is a controlling stationary coil core (9) which can be magnetized by an electric coil (7), and the engagement pin (9) is spring-loaded in the direction of the sliding cam (2), and wherein an actuating device is installed at least at that end region of the engagement pin (9) which faces the sliding cam (2), which actuating device is active in the region of the run-out of the ejection ramp (4) to the high circle (18) and generates an additional force on the engagement pin (9) in the direction of the housing (6).
Abstract:
Actuator device of a sliding cam system, having at least one sliding cam (2) and having an engagement pin (9) which protrudes out of a housing (6), wherein the housing (6) can be fastened to a component of a cylinder head or to the cylinder head of an internal combustion engine, and it is possible for contact to be made with the engagement pin (9) by at least one groove (3) of the sliding cam system, which groove (3) has at least one ejection ramp (4), and wherein, within the housing (6), the engagement pin (9) has a permanent holding magnet (11) and, adjoining it, is a controlling stationary coil core (9) which can be magnetized by an electric coil (7), and the engagement pin (9) is spring-loaded in the direction of the sliding cam (2), and wherein an actuating device is installed at least at that end region of the engagement pin (9) which faces the sliding cam (2), which actuating device is active in the region of the run-out of the ejection ramp (4) to the high circle (18) and generates an additional force on the engagement pin (9) in the direction of the housing (6).
Abstract:
A valve train of an internal combustion engine with a camshaft (1) that has a carrier shaft (2) and a cam part (3) that is locked on rotation on the carrier shaft and is arranged displaceable in the axial direction and has at least one cam group (4a to 4c, 5a to 5c) of different elevations for variable actuation of a gas-exchange valve and a groove-shaped axial connecting link (10) with two connecting-link paths (11, 12) crossing its periphery, and with two actuation pins (13, 14) that can be coupled in the connecting-link paths for displacement of the cam part in the direction of the two connecting-link paths. The axial connecting link is further provided with a third connecting-link path (20) that runs essentially equidistant to one of the two crossing connecting-link paths, and the actuation pins can be coupled simultaneously in the first connecting-link path (11) and the third connecting-link path, and the actuation pin (13) coupled in the third connecting-link path forces a further displacement of the cam part in a direction of the first connecting-link path when passing through the crossing region (16) of the first and second connecting-link paths.
Abstract:
A valve drive of an internal combustion engine with variable-lift gas exchange valve actuation. The valve drive has a camshaft with a support shaft and a cam piece arranged on the support shaft for conjoint rotation therewith and to be movable between axial positions. The cam piece has two cam groups of directly adjacent cams with different elevations and, on the end side, the cam piece has an axial slotted guide into which can be coupled an actuating element. The cam piece has a bearing journal which runs between the cam groups and rotatably mounted in a camshaft bearing point arranged in a positionally fixed manner in the engine. Here, the diameter of the bearing journal is larger than the envelope circle diameter of a cam closest to the bearing journal with the cam and camshaft bearing point overlapping axially in an axial position of the cam piece.
Abstract:
Actuator device of a sliding cam system with at least one sliding cam and with at least one actuator pin (13) projecting from the housing. The housing is attachable to a component of a cylinder head or to the cylinder head of an internal combustion engine and the actuator pin(s) (13) can contact at least one groove of a sliding cam system that has at least one ejection ramp. The actuator pin(s) (13) are loaded in the direction toward the sliding cam by springs (14) and can be fixed in their retracted position facing away from the groove by a latching device that can be locked and is controlled by an electromagnet unit. At least one latch element (11) of the latching device is in active connection with at least one recess (12) on the actuator pin(s) (13).
Abstract:
A valve drive (1, 1′) of an internal combustion engine with stroke-variable gas-exchange valve activation is provided. The valve drive includes a camshaft (2, 2′) with a carrier shaft (3) and a cam piece (4, 4′) that is arranged in a rotationally locked way on the carrier shaft and that can move between axial positions and that has a cam group of directly adjacent cams (14a-c, 15a-c) with different lobes and a groove-shaped axial link (16, 16′) and an activation element (18, 19) that can be coupled in the axial link for shifting the cam piece on the carrier shaft. The cam piece is provided with a bearing journal (12, 13, or 12′) on which the camshaft is supported in the radial direction at a camshaft bearing point (9, 10, or 9′) of the internal combustion engine. Here, the axial link is constructed overlapping with the camshaft bearing point on the bearing journal in the axial direction, and the activation element runs in the camshaft bearing point.
Abstract:
A valve drive of an internal combustion engine, which has a reciprocating poppet valve and a spring element which impinges the closed reciprocating poppet valve with force against the action of a valve seat. The force characteristics are substantially independent of the lift characteristics of the reciprocating poppet valve. The spring element is part of a snap-in locking device, which is stationarily mounted in the engine and surrounds the valve stem of the reciprocating poppet valve. The snap-in locking device has snap-in elements arranged in the power flux between the spring element and reciprocating poppet valve. The snap-in elements are supported in the direction of closure of the reciprocating poppet valve on a snap-in surface of the valve stem when the reciprocating poppet valve is closed and on a snap-in surface of the snap-in locking device when the reciprocating poppet valve is open.