Abstract:
An edge-emitting laser (100) for generating single-longitudinal mode laser light. A semiconductor active region (120) amplifies, by stimulated emission, light in the laser cavity at a lasing wavelength. There are first and second grating sections (141,143) adjacent to the active region (120) and having first and second reflectivities respectively and a first effective index of refraction. The first and second grating sections (141,143) have a Bragg wavelength substantially equal to the lasing wavelength. A gratingless phase-shift section (142) is disposed adjacent to the active region (120) and between the first and second grating sections (141,143) and has a second index of refraction different than the first index of refraction and a length sufficient to impart a phase shift for light at the lasing wavelength sufficient to achieve longitudinal mode operation.
Abstract:
A monitored laser system (810) includes a laser with a first mirror (816) and an exit mirror (814). The laser also has a laser cavity (812) defined at least in part by the first mirror (816) and the exit mirror (814). Within the laser cavity (812) is an active region that contains material that is capable of stimulated emission at one or more wavelengths such that laser light is emitted from the laser. A power source is coupled to the active region. A multiple reflectivity band reflector (MRBR) (824) is coupled to at least a portion of the emitted laser light. The MRBR has at least first and second wavelength bands with reflectivity above a particular reflectivity separated by at least a third wavelength band having reflectivity below the particular reflectivity. A first photodiode (826a) is coupled to at least a portion of the filtered laser light and produces an output based on the amount and wavelength of light received. A means for adjusting the emitted wavelength of the laser toward a particular wavelength in one of the at least first, second, and third wavelength bands based at least in part on the output of the first photodiode (826a).
Abstract:
In a laser package, a tilted laser causes laser light to be coupled into an optical fiber at an angle relative to a fiber axis of the optical fiber. The tilted laser emits laser light at an angle relative to a lens axis of a lens such that the lens directs and focuses the laser light at the angle relative to the fiber axis. Tilting the laser allows the laser light to be coupled into the optical fiber substantially parallel to or aligned with the core of the fiber while causing back reflection to be directed away from the laser, thereby improving coupling efficiency and minimizing feedback. The tilted laser may be coupled to an angle polished fiber, for example, in a laser package such as a TO can type laser package, a butterfly type laser package, or a TOSA type laser package.
Abstract:
A surface-emitting laser, such as a VCSEL (100), for generating single-transverse mode laser light at a lasing wavelength, has a first mirror (121) and a second mirror (148) positioned so as to define a laser cavity therebetween, and a semiconductor active region (141) disposed between the first and second mirrors (121, 148) for amplifying, by stimulated emission, light in the laser cavity at the lasing wavelength. An annular antiguide structure (150) is disposed within the laser cavity and between the active region (141) and one of the first and second mirrors (141, 148), the annular antiguide structure (150) comprising an antiguide material (n2) and having a central opening, the central opening comprising a second material (n1) having an index of refraction for light at the lasing wavelength smaller than that of the antiguide material, whereby the annular antiguide structure (150) causes preferential antiguiding of higher order transverse lasing modes in the laser cavity.
Abstract:
A laser apparatus has a first mirror, a second mirror, at least a portion of which is defined by the first and second mirrors. The laser has an active region located in the laser cavity, which is capable of stimulated emission at one or more wavelengths of light. The second mirror comprises a plurality of dielectric layers arranged in parallel and having a reflectivity band with a peak reflectivity at a peak wavelength, said reflectivity band having a width of less than 1 nm at a reflectivity of 3 % less than the peak reflectivity. The laser apparatus may be a tunable laser apparatus in which the peak wavelength of the reflectivity band is adjusted, thereby adjusting the lasing wavelength of the laser. The reflectivity band may be a lasing threshold reflectivity band over which the reflectivity of the second mirror is greater than a lasing threshold reflectivity which is sufficient to permit lasing.
Abstract:
An edge-emitting laser (100) for generating single-longitudinal mode laser light. A semiconductor active region (120) amplifies, by stimulated emission, light in the laser cavity at a lasing wavelength. There are first and second grating sections (141,143) adjacent to the active region (120) and having first and second reflectivities respectively and a first effective index of refraction. The first and second grating sections (141,143) have a Bragg wavelength substantially equal to the lasing wavelength. A gratingless phase-shift section (142) is disposed adjacent to the active region (120) and between the first and second grating sections (141,143) and has a second index of refraction different than the first index of refraction and a length sufficient to impart a phase shift for light at the lasing wavelength sufficient to achieve longitudinal mode operation.