Abstract:
A method of classification of pixels into groups of pixels according to their association with a single fluorophore or a combination of fluorophores selected from a plurality of fluorophores, each of the fluorophores having characterizing excitation and emission spectra and specifying excitation and emission peaks, the method comprising the steps of (a) providing a plurality of pairs of wide-band excitation filters (114) and wide-band emission filters (116); (b) exciting fluorophores of each of the pixels with light filtered through one of the wide-band excitation filters, and recording emitted light intensity (122) as retrieved after passing through its paired emission filter; (c) repeating step (b) for all of the plurality of pairs of filters, such that each of the pixels is representable by a vector of a plurality of dimensions, the number of dimensions being equal to the number of the plurality of pairs of filters; (d) using an algorithm for evaluating the presence of each of the plurality of fluorophores in each of the pixels, thereby classifying each of the pixels into a group of pixels according to its association with a single fluorophore or combination of fluorophores.
Abstract:
An apparatus for use in a method of detecting and analysing fluorescent in-situ hybridisations (fig. 5) employing numerous chromosome paints (fig. 9) each labelled with a different fluorophore or combination of fluorophores, the apparatus being highly sensitive both in spatial and spectral resolutions (fig. 6) such that it is capable of simultaneous detection of dozens of fluorophores or combinations of fluorophores (fig. 7) so as to enable the detection of a complete set of fluorescently painted human chromosomes (fig. 10).
Abstract:
A method of classification of pixels into groups of pixels according to their association with a single fluorophore or a combination of fluorophores selected from a plurality of fluorophores, each of the fluorophores having characterizing excitation and emission spectra and specifying excitation and emission peaks, the method comprising the steps of (a) providing a plurality of pairs of wide-band excitation filters (114) and wide-band emission filters (116); (b) exciting fluorophores of each of the pixels with light filtered through one of the wide-band excitation filters, and recording emitted light intensity (122) as retrieved after passing through its paired emission filter; (c) repeating step (b) for all of the plurality of pairs of filters, such that each of the pixels is representable by a vector of a plurality of dimensions, the number of dimensions being equal to the number of the plurality of pairs of filters; (d) using an algorithm for evaluating the presence of each of the plurality of fluorophores in each of the pixels, thereby classifying each of the pixels into a group of pixels according to its association with a single fluorophore or combination of fluorophores.
Abstract:
A method of classification of pixels into groups of pixels according to their association with a single fluorophore or a combination of fluorophores selected from a plurality of fluorophores, each of the fluorophores having characterizing excitation and emission spectra and specifying excitation and emission peaks, the method comprising the steps of (a) providing a plurality of pairs of wide-band excitation filters (114) and wide-band emission filters (116); (b) exciting fluorophores of each of the pixels with light filtered through one of the wide-band excitation filters, and recording emitted light intensity (122) as retrieved after passing through its paired emission filter; (c) repeating step (b) for all of the plurality of pairs of filters, such that each of the pixels is representable by a vector of a plurality of dimensions, the number of dimensions being equal to the number of the plurality of pairs of filters; (d) using an algorithm for evaluating the presence of each of the plurality of fluorophores in each of the pixels, thereby classifying each of the pixels into a group of pixels according to its association with a single fluorophore or combination of fluorophores.