Abstract:
Propylene terpolymers are prepared by polymerizing propylene, ethylene and an alpha-olefin selected from the group of C4-C8 alpha-olefins in the presence of a catalyst system obtained by contacting a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other selected from 1,3 diethers, an aluminum hydrocarbyl compound, and optionally an external electron donor compound.
Abstract:
A polyolefin composition comprising: A) from 90.0 wt% to 99.0 wt%; of a copolymer of propylene with ethylene wherein: i) the content of ethylene derived units comprised between 1.0 wt% and 8.0 wt%; (ii) the melting temperature ranges from 135° C to 155° C; (iii) the melt flow rate (230°C/5 kg.. ISO 1133) ranging from 0.2 g/10min to 3.5 g/10min; (iv) the xylene solubles at 25°C ranges from 10.0 wt% to 4.0wt%; (v) the polydispersity, PI, ranges from 3.0 to 7.0; B) from 1.0 wt% to 10.0 wt%; of a propylene ethylene copolymer containing from 8.0 wt% to 20.0 wt% of ethylene; said copolymer having a MFR (measured at 190°C 2.16 kg of load) comprised between 0.5 g/10 min and 5.0 g/10 min wherein the resulting polyolefin composition has an melt flow rate (230°C/5 kg.. ISO 1133) ranging from 0.2 g/10min to 4.0 g/10min; the sum A+B being 100.
Abstract:
A polyolefin composition comprising: A) from 90.0 wt% to 99.0 wt%; of a copolymer of propylene with ethylene wherein: i) the content of ethylene derived units is comprised between 1.0 wt% and 8.0 wt%; (ii) the melting temperature ranges from 135° C to 155° C; (iii) the melt flow rate (230°C/5 kg.. ISO 1133) ranging from 0.2 g/10min to 3.5 g/10min; (iv) the xylene solubles at 25°C ranges from 20.0 wt% to 4.0wt%; (v) the polydispersity, PI, ranges from 3.0 to 7.0; B) from 1.0 wt% to 10.0 wt%; of a propylene, ethylene copolymer composition comprising: b1) from 12 wt% to 52 wt%; of a propylene homopolymer or a propylene/ethylene copolymer; b2) from 48 wt% to 88 wt% of a propylene ethylene copolymer having a content of ethylene derived units ranging from 15.0 wt% to 42.0 wt%.
Abstract:
Films or sheets comprising a layer of a heterophasic propylene copolymer containing up to 7.0% by weight of ethylene-derived units and comprising: (a) from 80% to 92% by weight of a matrix phase being a propylene homopolymer or a propylene copolymer containing up to 5% by weight of units derived from ethylene and/or an alpha-olefin; and (b) from 8% to 20% by weight of a rubber phase that is an ethylene-propylene copolymer containing from 20% to 60% by weight of ethylene-derived units.
Abstract:
A polyolefin composition, particularly fit for the production of extrusion blow molded articles, comprising (a) a propylene-ethylene copolymer having a content of units deriving from ethylene of 4.0 % by weight or higher, and (b) a nucleating agent and having a crystallization temperature (Tc) higher than 117°C can be obtained by copolymerizing propylene and ethylene in the presence of a catalyst system obtained by contacting a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other selected from 1,3 diethers, an aluminum hydrocarbyl compound, and optionally an external electron donor compound.
Abstract:
A processfor the preparation of propylene polymer compositions comprising from 50 to 90 % by weight of a propylene (co)polymer fraction insoluble in xylene at 25°C, and from 10 to 50% by weight of an ethylene copolymer fraction soluble in xylene at 25°C, said process comprising: (i)a first step of polymerizing propylene in the optional presence of ethylene and/or C 4 - C 10 alpha olefins, to produce a propylene (co)polymer being for at least 85% by weight insoluble in xylene at 25°C; and (ii)a successive step, carried out in gas-phase, in the presence of the product coming from step (i), of copolymerizing a mixture of ethylene with one or more α-olefins CH 2 =CHR in which R is a hydrocarbon radical having 1-10 carbon atoms, to produce an ethylene copolymer; the process being carried out in the presence of a catalyst system comprising: the product obtained by contacting: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two internal electron donor compounds one of which being present in an amount from 35 to 90% by mol with respect to the total amount of donors and being selected from succinates and the other being selected from 1,3-diethers, the total amount of internal electron donor compounds being lower than 14.0% by weight with respect to the total weight of the solid catalyst component; with (b) an aluminum hydrocarbyl compound, and optionally with (c) an external electron donor compound.
Abstract:
A process for the preparation of random copolymer of propylene containing up to 6.0 % by weight of ethylene units, suitable for the manufacture of pipes, by copolymerizing propylene and ethylene in the presence of a catalyst system comprising the product obtained by contacting the following components: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) n aluminum hydrocarbyl compound, and (c) optionally an external electron donor compound.
Abstract:
Fibers comprising a polypropylene obtainable by a process comprising the steps of: (i) polymerizing propylene in the presence of a catalyst system comprising the product obtained by contacting the following components: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) an aluminum hydrocarbyl compound, and (c) optionally an external electron donor compound, to obtain a polypropylene precursor having a melt flow rate MFRl; (ii) subjecting the thus-obtained polypropylene precursor to visbreaking to obtain a visbroken polypropylene having a melt flow rate MFR2; (iii) spinning the visbroken polypropylene obtained in the previous step; wherein MFR2 is comprised between from 15 to 40 g/10min, the ratio MFR2/MFR1 is comprised between 8 and 18, both MFRl and MFR2 being measured according to ISO method 1133 (230° C, 2.16 kg).
Abstract:
A propylene-1-hexene copolymer having: i) a content of 1-hexene derived units ranging from 0.6 wt% to 3.0 wt%; ii) melt flow rate (MFR) measured according to the method ISO 1133 (230° C, 5 kg) ranging from 0.5 g/10 min to 5.0 g/10 min iii) the polydispersity (PI) ranges from 4.5 to 10 and the distribution of molecular weight is of multimodal type; iv) the melting point ranges from 160°C to 145°C; v) the DSC curve (temperature/heat of fusion) shows at least two peaks.
Abstract:
A terpolymer containing propylene, ethylene and 1-hexene obtainable by the step of copolymerizing propylene, ethylene and 1-hexene in the presence of a catalyst system comprising the product obtained by contacting the following components: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) an aluminum hydrocarbyl compound, and (c) optionally an external electron donor compound, wherein in the terpolymer (i) the content of 1-hexene derived units ranges from 0.5 to 5.0 wt%; (ii) the content of ethylene derived units is higher than 1.4 t% and fulfils the following relation (1): C2